Present invention relates to a construction and a method for constructing same. This application is based upon and claims the benefit of priority from the Japanese Patent Application No. 2016-232415 filed in Japan on Nov. 30, 2016.
Recently, a construction (hereinafter, may be referred to as “two-by-four construction” or “2×4 building”) by wooden wall frame construction method (hereinafter, may be referred to as “two-by-four construction method” or “2×4 construction method”), which is becoming popular, is having a characteristics capable of shortening a construction period compared to a conventional wooden house. However, this “2×4 building” is having a defect that it is troublesome to fix panels at precise positions, as walls are constructed by connecting panels. It is because, in a building of this structure, panels are fastened by nails around peripheral edge of a floor constructed in planar shape, so it tends to occur position displacement in all directions. In addition, panels to be fixed one by one in adjacent to panels previously fixed on the floor need to be connected precisely in identical plane. If adjacent panels are not connected in planar shape, it is not possible to finish finely as there will be unevenness on a surface of interior material.
It is necessary for workers to support panels in both indoor side and outdoor side of panels and to adjust its fixing position, in order to connect adjacent panels precisely in identical plane. The workers at indoor side can support panels safely on a floor. However, the workers at outdoor side need to support panels on scaffolding. When constructing a wall of second stairs, it will be a work at high scaffolding, so it will be considerably dangerous work to support heavy panels. Especially, when panels incline for outdoor side, it is necessary for the workers on scaffolding to support inclined panels, and it will be an extremely dangerous condition. Further, weight of a panel, which is enlarged to improve construction efficiency, is more than 100 kg, and it is extremely dangerous to support this panel on high scaffolding.
Here, “2×4 building” solving these defects, in other words, a technology for making the work safe by efficiently fixing panels easily at precise positions is disclosed in Patent Literature 1. More concretely, the panels are positioned at indoor side and having hooking protrusion at side edge thereof. The hooking protrusion is locked at indoor side of laterally adjacent panel. It is possible to fix panels at fixed position by preventing panels from falling down, by connecting the hooking protrusion to the adjacent panel as the above.
On the other hand, about a construction of log house different from “2×4 building”, a technology for resolving damage and distortion by making drying of crossing part uniform, and also, for preventing rain water from intruding into indoor by treatment of rain water, is disclosed in Patent Literature 2. More concretely, (a) in a joint, a fitting recess for fitting in cross direction of left and right is drilled, an upper recess and lower recess for fitting in cross direction of up and down are drilled, and a core is formed inside, at four corners in which the fitting recess and a body are connected, connecting surfaces are formed to be in planes 45 degrees with respect to a longitudinal direction of a log, and in the core, a rounded protruding surface in semi-cylindrical shape is formed on top surface along a longitudinal direction of a log, and a rounded recessed surface is formed at bottom along perpendicular direction to be corresponding to the rounded protruding surface, and also, vertical grooves are drilled at both side surfaces for guiding falling water downward, (b) in the body, at least two rows or more protruding banks are provided in parallel on top surface, and outer sides of the protruding banks will be connection surfaces in which upper and lower logs overlaps, a body cavity is formed between the protruding banks, in which a little gap is formed when the logs are overlapped, and also, a recessed groove is drilled at bottom surface for fitting with the protruding banks, (c) a water draining hole inclined to outside is formed in a base.
Patent Literature 1: JP H5-85904 Y
Patent Literature 2: JP H7-13917 Y
However, in Patent Literature 1, as it is described that weight of a panel, which is enlarged to improve construction efficiency, is more than 100 kg, and that it is extremely dangerous to support this panel on high scaffolding, at construction site of “2×4 building”, it has been considered that a work to fit a panel with weight more than 100 kg by plural workers is basically inevitable. On the other hand, at construction site of “2×4 building”, there was a request to be able to fit from one relatively lightweight pillar, and to make a work to fit large and heavy panel by plural workers unnecessary.
In addition, in Patent Literature 2, a structure of log house having a joint to fit protruding banks formed at one wood and a recessed groove or a fitting recess formed at other wood can expect an effect to resolve damage and distortion by making drying of crossing part uniform, and also, to prevent rain water from intruding into indoor by treatment of rain water.
However, even with the joint to fit the protruding banks and the recessed groove or the fitting recess, as described in Patent Literature 2, it was not completed as a countermeasure for eliminating a work to fit a panel with weight more than 100 kg by plural workers at construction site of “2×4 building”.
The present invention was invented considering these problems, and the purpose of the present invention is to provide a construction capable of completing framework in short period with few workers by making pillars, which are relatively lightweight and can be supported by one worker, self-stood independently at free position in horizontal direction of upper frames or lower frames, and by making the work to fit large and heavy panel by plural workers unnecessary at construction site. Further, the purpose of the present invention is to provide a construction to improve productivity by simplifying and omitting joint process according to inherent standing position of the pillars with respect to horizontal members.
The present invention is invented to achieve these purposes, and the invention described in claim 1 is a wooden construction (100) having structural materials for assembling by fitting horizontal members (10) and vertical members (20), wherein at fitting parts of the structural materials, alternative joints are formed for fitting the vertical members (20) closely to the horizontal members (10) at optional position in horizontal direction of the horizontal members (10) to be able to make the vertical members (20) self-stood, the horizontal members compose upper frame materials (19) and lower frame materials (17, 18), and a recessed groove (11) or a protruding stripe (12) formed over entire length (K) in longitudinal direction of each of the horizontal members forms one of the alternative joints, the vertical members (20) compose pillar materials (29) or framework walls (50), and each of the pillar materials (29) are formed with a protrusion (22) or a recess (21) at both ends (26, 27), which can be fitted closely to the recessed groove (11) or the protruding stripe (12).
The invention described in claim 2 is the construction (100) according to claim 1, wherein the horizontal members (10) compose each of the upper frame materials (19) and the lower frame materials (17, 18) by laminating three sawn plates (1 to 3, 4 to 6) with two types or more of different plate width (U, V, W, Z) in plate thickness direction, the recessed groove (11) or the protruding stripe (12) formed over entire length (K) in longitudinal direction of each of the horizontal members forms one of the alternative joints by a difference (D) provided between outer layer plate width (W, Z) of outer layer sawn plates (1, 3, 4, 6) interposing an intermediate layer from outer layers in the three laminated layers and an intermediate plate width (U, V) of intermediate sawn plate (2, 5) interposed as the intermediate layer, the vertical members (20) compose each of the pillar materials (29) or the framework walls (50) by laminating three sawn plates (23 to 25) in plate width direction, and each of the pillar materials (29) are formed with a protrusion (22) or a recess (21) at both ends (26, 27), which can be fitted closely to the recessed groove (11) or the protruding stripe (12), by deviating an intermediate sawn plate (24) in a longitudinal direction for a distance of the difference (D) with respect to outer layer sawn plates (23, 25) interposing the intermediate layer from the outer layers in the three laminated layers, in which all of sawn plates (23 to 25) to be laminated are having the same length (L).
In addition, the invention described in claim 3 is the construction (100) according to claim 1 or 2, wherein each of the lower frame materials (17, 18) are provided with the protruding stripe (12) directed upward, each of the pillar materials (29) are standing with its lower end (26) formed with the recess (21) directed downward and with its upper end (27) formed with the protrusion (22) directed upward, each of the pillar materials (29) can be self-stood by fitting the recess (21) of the pillar materials (29) to the protruding stripe (12) of the lower frame materials (17, 18), and the recessed groove (11) of each of the upper frame materials (19) can be constructed by closely fitting the recessed groove (11) of the upper frame materials (19) downwardly to the protrusion (22) of the self-standing pillar materials (29) from above.
In addition, the invention described in claim 4 is the construction (100) according to claim 2 or 3, wherein in three sawn plates (1 to 3, 4 to 6) with two types or more of different plate width (U, V, W, Z), 206 material with thickness of 38 mm and width of 140 mm, 208 material with same thickness and width of 184 mm, or 210 material with same thickness and width of 235 mm is used as plate material with wide plate width (V, W), and 204 material with thickness of 38 mm and width of 89 mm or 205 material with same thickness and width of 114 mm is used as plate material with narrow plate width (U, Z).
In addition, the invention described in claim 5 is the construction (100) according to any of claims 2 to 4, wherein a material composed in equivalent shape as the three sawn plates from solid wood, laminated wood, or laminated veneer lumber is used, instead of the three sawn plates (1 to 3, 4 to 6).
In addition, the invention described in claim 6 is a wooden construction (100) having structural materials for assembling by fitting horizontal members (10) and vertical members (20), comprising: side joists (40) with protruding stripe formed in one plate by surface joining a side joist (13) composing the horizontal members (10) and a back side joist (16) with plate width wider than the side joist (13) by difference (D) at back side of the side joist (13), in which upward protruding stripe (42) is formed in longitudinal direction by the difference (D); and pillar materials (29) for upper floor composing the vertical members (20) in which a recess (21) capable of fitting closely to the upward protruding stripe (42) at optional position in longitudinal direction of the upward protruding stripe (42) to be able to make the vertical members (20) self-stood is formed at bottom end (26).
In addition, the invention described in claim 7 is the construction (100) according to claim 2 or 6, wherein the difference (D) is formed by deviating the materials with same size.
In addition, the invention described in claim 8 is the construction (100) according to claim 7, further comprising eaves holders (43) or upper rails (41) formed to absorb the difference (D) of at least one side of the protruding stripe (12, 42) by covering the protruding stripe (12, 42).
In addition, the invention described in claim 9 is a construction method for assembling a wooden construction (100) having structural materials in which vertical members (20) composing pillar materials (29) or framework walls (50) are fitted to horizontal members (10) composing lower frame materials (17, 18) and upper frame materials (19) at construction site, comprising: an alternative joint forming step (S10) for previously forming alternative joints at fitting parts of the structural materials; and an assembly step (S20) for assembling the structural materials formed with the alternative joints, wherein the alternative joints for closely fitting the vertical members (20) to the horizontal members (10) at optional position in horizontal direction of the horizontal members (10) to be able to make the vertical members (20) self-stood are previously provided at fitting parts of the structural materials.
In addition, the invention described in claim 10 is the construction method according to claim 9, wherein the alternative joint forming step (S10) comprising: a lower frame protruding stripe and upper frame recessed groove forming step (S11), in which three sawn plates (1 to 3, 4 to 6) with two types or more of different plate width (U, V, W, Z) are laminated in plate thickness direction in order to form one of the alternative joints over entire length (K) in longitudinal direction of each of the upper frame materials (19) and the lower frame materials (17, 18), for forming a recessed groove (11) or a protruding stripe (12) formed in longitudinal direction by a difference (D) provided between an outer layer plate width (W, Z) of outer layer sawn plates (1, 3, 4, 6) interposing an intermediate layer from outer layers in three laminated layers and an intermediate plate width (U, V) of an intermediate sawn plate (2, 5) interposed as the intermediate layer; and a pillar material end recess and end protrusion forming step (S12), in which three sawn plates (23 to 25) in same length (L) are laminated in plate thickness direction in order to form the alternative joints at both ends (26, 27) of each of the pillar materials (29), for forming a recess (21) or a protrusion (22) capable of fitting closely to the protruding stripe (12) or the recessed groove (11) by deviating an intermediate sawn plate (24) in longitudinal direction for the difference (D) with respect to outer layer sawn plates (23, 25) interposing an intermediate layer from outer layers in three laminated layers, and wherein the assembly step (S20) comprising: a lower frame material arranging step (S21) for arranging the lower frame materials (17, 18); a pillar material self-standing fitting step (S22) for self-standing the pillar materials (29) by fitting the recess (21) formed at lower end (26) of each of the pillar materials (29) to the protruding stripe (12) of the lower frame materials (17, 18) arranged upward; and an upper frame material fitting step (S23) for fitting the upper frame materials (19) with downward recessed groove (11) to cover the above of the protrusion (22) formed at upper end (27) of each of the self-standing pillar materials (29).
In addition, the invention described in claim 11 is the construction method according to claim 10, wherein a material composed in equivalent shape as the three sawn plates from solid wood, laminated wood, or laminated veneer lumber is used, instead of the three sawn plates (1 to 3, 4 to 6).
In addition, the invention described in claim 12 is the construction method according to claim 10 or 11, wherein the difference (D) is formed by deviating the materials with same size.
In addition, the invention described in claim 13 is the construction method according to claim 12, wherein eaves holders (43) or upper rails (41) formed to absorb the difference (D) of at least one side of the protruding stripe (12, 42) by covering the protruding stripe (12, 42) are used.
According to the present invention, it is possible to provide a construction capable of completing framework in short period with few workers by making pillars, which are relatively lightweight and can be supported by one worker, self-stood independently at free position in horizontal direction of upper frames or lower frames, and by making the work to fit large and heavy panel by plural workers unnecessary at construction site. Further, it is possible to provide a construction to improve productivity by simplifying and omitting joint process according to inherent standing position of the pillars with respect to horizontal members.
A wooden framework construction method (hereinafter, referred to as “conventional construction method”) is a traditional construction method in Japan, and it is a construction method for assembling by providing joints to precut pillars and beam materials, and by reinforcing with metal fittings. A wooden framework panel construction method (hereinafter, referred to as “IDS construction method”) based on this construction method also belongs to a category of the conventional construction method basically. On the other hand, 2×4 construction method is a traditional construction method in North America, and it is having an advantage that high processing technique is not necessary, as standardized panels are assembled by metal fittings or nailing. In addition, wooden framework is assembled by structural materials.
As lumbers for 2×4 construction method, it is defined in JAS (Japanese Agricultural Standard), but woods with prescribed size specified by names below are used. In other words, 1×4 (19×89 for dried wood), 1×6, 2×2, 2×3, 2×4 (204 material), 2×5 (205 material), 2×6 (206 material), 2×8, 2×10 (210 material), 2×12, 4×4 (404 material), and 4×6 (406 material) with different sectional shape are used. In addition, the names are derived from inch size, but actual sizes are smaller than the named inch size.
Hereinafter, explaining about embodiments of the present invention by referring to the drawings.
Alternative joints are formed by deforming and generalizing joints to be formed previously at fitting parts of the structural materials composed of the horizontal members 10 and the vertical members 20. The horizontal members 10 mainly compose the upper frame materials 19 and the lower frame materials 18, and a recessed groove 11 or a protruding stripe 12 is formed over entire length in longitudinal direction of each of the horizontal members 10 as the alternative joint. The vertical members 20 composes the pillar materials 29 by forming the alternative joints at both ends in a shape capable of fitting closely to the recessed groove 11 or the protruding stripe 12.
As mentioned above, the pillar material 29 is composed by laminating three sawn plates 23 to 25 all in same length L. A recess 21 is formed at lower end 26 of the pillar material 29. In addition, a protrusion 22 is formed at upper end 27 of the pillar material 29. These recess 21 and protrusion 22 are formed by deviating an intermediate sawn plate 24 in longitudinal direction for a difference D with respect to outer layer sawn plates 23, 25 interposing an intermediate layer from outer layers in three laminated layers.
The pillar material 29 maintains a state that the intermediate sawn plate 24 with the length L is deviated in longitudinal direction for the difference with respect to the outer layer sawn plates 23, 25 with the length L, and integrated as one by unillustrated nailing. This operation does not use glue, so it can be performed easily at construction site by non-skilled workers, and not in factory. As a result, in this pillar material 29, the protrusion 22 is formed at upper end 27 illustrated in
This recessed groove 11 or protruding stripe 12 is formed by a difference D provided between outer layer plate width W, Z of the outer layer sawn plates 1, 3, 4, 6 interposing the intermediate layer from the outer layers in the three laminated layers and an intermediate plate width U, V of the intermediate sawn plate 2, 5 interposed as the intermediate layer. This alternative joint generalizes and alleviates fitting condition of the joint, and also, the alternative joint is formed to fit the vertical member 20 closely to an optional position in horizontal direction of the horizontal member 10 to be able to make the vertical member 20 self-stood. In addition, the operation to integrate three laminated layers as one is performed by maintaining a state that the intermediate sawn plate 2, 5 and the outer layer sawn plates 1, 3, 4, 6 are deviated in plate thickness direction for the difference D, and by integrating as one by unillustrated nailing.
As illustrated in
As illustrated in
As mentioned above, the vertical member 20 composing the pillar material 29 illustrated in
As illustrated in
The construction method is a construction method for assembling structural materials comprising horizontal members 10 composed of at least lower frame materials 18 and upper frame materials 19 and vertical member 20 composed of pillar materials 29 at construction site. In the construction method, alternative joints deformed to generalize joints to be formed at fitting parts of the structural materials are formed previously. In the construction method, the alternative joints are having a shape capable of self-standing the horizontal members 10 and the vertical members 20 when they are fitted closely. In addition, the recess 21 and the protrusion 22 of the pillar material 29, the protruding stripe 12 of the lower frame material 17, 18, and the recessed groove 11 of the upper frame material 19 can be formed equivalently by processing one solid wood, laminated wood, or laminated veneer lumber by grooving or the like, and equivalent effect can be achieved.
In addition, in a wall surface illustrated in
In
In other words, the recess 21 formed at lower end 26 of the pillar material 29 illustrated in
In other words, it is possible to provide the construction 100 with improved productivity by simplifying and omitting joint process according to inherent standing position of the pillars 29 with respect to the horizontal members 10. In addition, it is possible to complete the framework in short period with few workers by making only the pillars, which are relatively lightweight and can be supported by one worker, self-stood at free position in horizontal direction of upper frames 19 or lower frames (17), 18, and by making the work to fit large and heavy panel by plural workers unnecessary at construction site.
The wooden construction 100 illustrated in
Also, in the pillar materials 29 of
As explained in the above, according to the construction relating to the present invention, it is possible to complete the framework in short period with few workers by making pillars, which are relatively lightweight and can be supported by one worker, self-stood independently at free position in horizontal direction of upper frames or lower frames, and by making the work to fit large and heavy panel by plural workers unnecessary at construction site.
In conventional wooden framework panel (IDS) construction method, it is necessary to self-stand the pillar materials 29 only by the framework. Therefore, joints were formed at fitting parts of the structural materials, and closely fitting state was formed by combining these joints, and self-standing state was maintained. As conventional IDS construction method, in the construction 100, the entire process is progressed in order of mounting wall surface 51, 52 (
Hereinafter, explaining in more detail about the construction method using
The construction method is a construction method for constructing the wooden construction 100 by assembling these structural materials at construction site to fit the horizontal members 10 to the vertical members 20. The horizontal members 10 are composed of the lower frame material 17, 18, the upper frame material 19, the side joist 13, the floor joist 14, the floor plywood (structural plywood) 31, 32 and the side joist 40 with protruding stripe. The vertical members 20 are composed of the pillar material 29 and the outer wall plywood (structural plywood) 51, 52 or the framework wall 50.
The alternative joints are formed previously at fitting parts of the structural materials before assembly. These alternative joints are formed by deforming and generalizing the joints to be formed previously at fitting parts of the structural materials. In other words, the alternative joints generalize and alleviate fitting condition of the joints, and also, the alternative joints are formed to fit the vertical members 20 closely to an optional position in horizontal direction of the horizontal members 10 to be able to make the vertical members 20 self-stood. However, the alternative joints can be formed easily by non-skilled worker at construction site, not in sawmilling factory for wooden wall frame construction method.
In the alternative joint forming step (S10), three sawn plates 1 to 3, 4 to 6 with two or more types of different plate width U, V, W, Z are laminated in plate thickness direction, in order to form the alternative joint over entire length K in longitudinal direction of the upper frame material 19 or the lower frame material 17, 18. This alternative joint forming step (S10) further comprises a lower frame protruding stripe and upper frame recessed groove forming step (S11) and a pillar material end recess and end protrusion forming step (S12).
In the lower frame protruding stripe and upper frame recessed groove forming step (S11), the recessed groove 11 or the protruding stripe 12 extending in longitudinal direction is formed by the difference D provided between the outer layer plate width W, Z of the outer layer sawn plates 1, 3, 4, 6 interposing the intermediate layer from outer layers in three laminated layers and the intermediate plate width U, V of the intermediate sawn plate 2, 5 interposed by the outer layers as the intermediate layer. The recessed groove 11 or the protruding stripe 12 is formed as the alternative joint over entire length K in longitudinal direction of the horizontal member 10.
In the pillar material end recess and end protrusion forming step (S12), the alternative joints are formed at both ends 26, 27 of the pillar material 29. Therefore, three sawn plates 23 to 25 with same length L are laminated in plate thickness direction to be one member. The protrusion 22 and the recess 21 are formed as the alternative joints by deviating the intermediate sawn plate 24 for the difference D in longitudinal direction with respect to the outer layer sawn plates 23, 25 interposing the intermediate layer from the outer layers in the three laminated layers. The protrusion 22 formed at upper end 27 of the pillar material 29 can be fitted closely to the recessed groove 11. The recess 21 formed at lower end 26 of the pillar material 29 can be fitted closely to the protruding stripe 12 to make the pillar material 29 self-stood.
The assembly step (S20) further comprises a lower frame material arranging step (S21), a pillar material self-standing fitting step (S22), and an upper frame material fitting step (S23). In the lower frame material arranging step (S21), the lower frame materials 18 are arranged on the floor plywood 31 laid on the base 61 in the first floor part. In the second floor part, the lower frame materials 17 are formed on the floor plywood 32 laid on the side joist 13 and the floor joist 14. In the pillar material self-standing fitting step (S22), the recess 21 formed at lower end 26 of each of the pillar material 29 is fitted to the alternative joint of the protruding stripe 12 of the lower frame materials 17, 18 arranged upwardly to make the pillar materials 29 self-stood. In the upper frame material fitting step (S23), the upper frame materials 19 with the alternative joint of the downward recessed groove 11 is fitted to the protrusion 22 formed at upper end 27 of each of the self-stood pillar materials 29 to cover the above of the protrusions 22.
As explained in the above, according to the construction method relating to the present invention, the recess 21 formed at lower end 26 of each of the pillar materials 29 can be fitted closely to the protruding stripe 12 of the lower frame materials 17, 18 to make the pillar materials 29 self-stood. Further, the protrusion 22 formed at upper end 27 of each of the pillar material 29 can be fitted closely to the recessed groove 11 of the upper frame materials 19. Therefore, it is possible to set up the framework easily with few workers, as the framework can be fixed without becoming unstable only by fitting these alternative joints. In other words, it is having an effect to be able to complete the framework in short period with few workers by making pillars, which are relatively lightweight and can be supported by one worker, self-stood independently at free position in horizontal direction of upper frames or lower frames. As a result, it is having an effect to make the work to fit large and heavy panel by plural workers unnecessary at construction site.
Next, disclosing about frame materials described with latest sizes, in order to facilitate an adoption in many areas all over the world, using
About each 2×4 material illustrated in
In addition, about each frame material disclosed using
In addition, not only the deviation occurred by bending of the purlin (upper rail), but also, there is a case that height of the protrusion 22, which should be 66 mm, could be higher to the extent of 69 mm as aligning position of three sawn plates is deviated to the extent of 3 mm. Also, in this case, the recessed groove 11 is set to a depth of about 70 mm with excess space, so that the higher protrusion 22 can be fitted in entirely. As a result, it is possible to achieve the effect to be able to fit the protrusion 22 smoothly without cutting off the protrusion 22, which is important for maintaining the structure even if it is too high, and also, the effect to be able to inhibit a defect to occur deviation to finishing of the building.
Same has been considered also to the fitting parts of the laid rail of
In addition, not only that the laid rail may be bent and deviation may be occurred, but also that there is a case that aligning position of three sawn plates is deviated for about 6 mm, and a depth of the recessed groove 21, which should be 58 mm, will be shallow as about 52 mm. A target depth of the recessed groove 21 is set to about 58 mm with excess space, so that it would be possible to receive the entire protruding stripe with height of 51 mm, also in that case. As a result, it is possible to achieve the effect to be able to fit the protruding stripe 12 smoothly without adjustment to cut off the entire protruding stripe 12 which is important for maintaining the structure even when bending or deviation occurs, and also, the effect to be able to inhibit a defect to occur deviation to finishing of the building.
Next, explaining about the effect of covering the upper rail 41 of
It is preferable to adjust component forces of load only to pushing down direction by lowering this pushing and bending stress. Here, by covering the upper side of the upper rail 41 of
Concerning the weight of the rafter and the roof loaded to the upper side of the upper rail formed in a shape of pillar with flat upper surface, the component forces of the load will be adjusted only to pushing down direction. As a result, a stress to push and bend the protruding stripe of the upper rail to a direction of the ridgepole will be decreased significantly, so the structure to support the rafter and the roof will be more stable. In other words, when the upper rail 41 of
In addition, about a function of the side joist 13 in second floor part, it is as illustrated in
As disclosed using
The construction and the construction method of the present invention can be adopted to 2×4 buildings and other buildings and to the construction method thereof.
Number | Date | Country | Kind |
---|---|---|---|
2016-232415 | Nov 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/041645 | 11/20/2017 | WO | 00 |