Information
-
Patent Grant
-
6287130
-
Patent Number
6,287,130
-
Date Filed
Wednesday, March 1, 200024 years ago
-
Date Issued
Tuesday, September 11, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Sircus; Brian
- Le; Than-Tam
Agents
- Sughrue, Mion, Zinn, Macpeak & Seas, PLLC
-
CPC
-
US Classifications
Field of Search
US
- 439 78
- 439 83
- 439 84
- 439 7331
- 439 876
- 439 607
-
International Classifications
-
Abstract
A connector insertion hole (26) is formed through a circuit board (12), and a connector (1) is inserted into the connector insertion hole (26) from one side of the circuit board (12) to be projected from the other side of the circuit board (12). A plurality of board-connecting terminals (5) are connected respectively to solder portions at the one side of the circuit board (12). Each of the board-connecting terminals (5) has a solder-connecting surface (11a) facing in the connecting-inserting direction. Fixing metal members (10) are provided on the connector (1), and each of the fixing metal members (10) has a solder-fixing surface facing in the connector-inserting direction. The fixing metal members (10) are fixedly secured to the one side of the circuit board (12) by soldering simultaneously when the board-connecting terminals (5) are connected to the circuit board (12).
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a construction of and a method of connecting a connector to a base board, in which the connector can be provided on either side of the circuit board even in the case where solder portions are formed only on one side of the circuit board.
The present application is based on Japanese Patent Application No. Hei. 11-52428, which is incorporated herein by reference.
2. Description of the Related Art
FIG. 6
shows a related construction of connecting a connector to a base board.
In this construction, a plurality of external board-connecting terminals
51
of the board-connecting connector (hereinafter referred to as “connector”)
40
are connected respectively to terminal-connecting portions of a printed circuit (not shown) on a front side or surface of an electronic circuit board (hereinafter referred to as “circuit board”)
50
by reflow soldering. The connector
40
is mounted on the surface of the circuit board
50
by soldering.
Rows of solder portions
52
are formed on the front side (upper surface) of the circuit board
50
, and the rows of board-connecting terminals
51
project outwardly respectively from lower portions of opposite side walls
54
of a connector housing
53
made of a synthetic resin. Each board-connecting terminal
51
is downwardly bent into a crank-shape, and a lower surface of a distal end portion
55
thereof is connected to the upper surface of the circuit board
50
through the solder portion
52
.
A flange
56
is formed integrally with a bottom portion of the connector housing
53
, and proximal end portions of the board-connecting terminals
51
are disposed on an upper surface of the flange
56
. Fixing metal members
60
of an L-shape are provided respectively at opposite end walls
59
of the connector housing
53
, and each fixing metal member
60
is engaged in grooves
61
, and a lower portion of each fixing metal member
60
is received in a notch
62
in the flange
56
, and is fixed at its lower surface to a solder portion
52
on the front side of the circuit board
50
. The soldering connection of the board-connecting terminals
51
to the circuit board
50
and the solder-fixing of the fixing metal members
60
are effected simultaneously by a reflow soldering apparatus (described later).
FIGS. 7A
to
7
D show a related reflow soldering method.
First, as shown in
FIGS. 7A and 7B
, a sheet
64
of a synthetic resin, having a plurality of holes
63
, is placed on the circuit board
50
, and a cream solder
65
is put on the sheet
64
, and is spread over this sheet, using a knife (not shown). The holes
63
in the sheet
64
are so arranged as to correspond to the relevant solder portions, respectively. The cream solder fills in the holes
63
, and deposits on the circuit board
50
. Then, the sheet
64
is removed as shown in
FIG. 7C
, and solder portions
52
are formed on predetermined portions of the circuit board
50
, respectively.
Then, the connector
40
is fixedly secured to the solder portions
52
by a thermosetting adhesive (not shown) as shown in FIG.
7
D. In this condition, the circuit board
67
with the connector is heated by a reflow soldering apparatus (not shown), and therefore the solder portions
52
are melted, so that the board-connecting terminals
52
(see
FIG. 6
) of the connector
40
are connected to the circuit board
50
by soldering.
In
FIG. 6
, when it is desired to provide the connectors
40
on the opposite (front and reverse) sides (surfaces) of the circuit board
50
, respectively, solder portions
52
are formed on each side of the circuit board
50
by the above method. By doing so, the two connectors
40
can be connected respectively to mating connectors (not shown) at the opposite sides of the circuit board
50
. In the case where such solder portions
52
can not be formed on one side (reverse side) of the circuit board
50
, for example, because of the form of the printed circuit on the circuit board
50
and the kind of the reflow soldering apparatus, a connector
41
of the through hole-connecting type is provided on the reverse surface of the circuit board
50
as shown in
FIG. 8
, board-connecting terminals
68
of the connector
41
are passed respectively through through holes
69
in the circuit board
50
, and are connected respectively to solder portions
70
(other than the reflow solder portions) on the front side of the circuit board
50
.
In the above construction and method of connecting the connector to the base board, however, in the case where the solder portions
52
can be formed only on one side of the circuit board
50
, there are required two steps, that is, the step of connecting the connector
40
to the front side of the circuit board
50
by the reflow soldering apparatus, and the step of subsequently connecting the reverse-side connector
41
to the through holes
69
in the circuit board
50
by soldering. Therefore, the productivity is low, and much time and labor are required for the assembling operation, and particularly when manually soldering the board-connecting terminals
68
to the respective through holes
69
, there has been encountered a problem that the efficiency of the operation is extremely low. In the case where the solder portions are formed on the opposite sides (surfaces) of the circuit board
50
, there have been encountered problems that the time and labor, twice larger than those required with the method of
FIG. 7
, are needed and that the operation is cumbersome. In the case where the connectors
40
are connected respectively to the opposite sides of the circuit board
50
by soldering, using the reflow soldering apparatus, the solder portions
52
on the lower side of the circuit board
50
drip, and therefore the soldering connection is difficult, which has resulted in a problem that complicated techniques and the high cost are required. A further problem is that the structure becomes bulky in the direction of the thickness of the circuit board
50
since the connector housing
53
projects from the surface of the circuit board
50
through the flange
56
.
With the above problems in view, it is an object of the present invention to provide a construction and a method of connecting a connector to a base board, in which a board-connecting connector can be efficiently provided on either side of the circuit board with less time and labor even in the case where solder portions can be formed only on one side of the circuit board, and the increase of the time and labor due to the formation of solder portions on opposite sides of the circuit board are eliminated, and connectors can be positively and easily connected to the opposite sides of the circuit board, respectively, and the structure is prevented from becoming bulky.
To achieve the above object, according to one aspect of the present invention, there is provided a construction of connecting a connector to a circuit board, which comprises a circuit board having a connector insertion hole formed therethrough, a plurality of solder portions formed on one of opposite sides of the circuit board, and a plurality of board-connecting terminals attached to a connector, the board-connecting terminals being respectively connected to the solder portions, wherein the connector is inserted into the connector insertion hole from the one side of the circuit board, and each of the board-connecting terminals has a solder-connecting surface facing in a direction of insertion of the connector. According to the present invention, it is preferable that the above construction further comprises a plurality of fixing metal members provided on the connector, and each of the fixing metal members having a solder-fixing surface facing in the direction of insertion of the connector.
Further, according to another aspect of the present invention, there is provided a method of connecting a connector to a circuit board. The method comprises the steps of forming a plurality of solder portions on a circuit board, forming a connector insertion hole through the circuit board, inserting a connector having a plurality of board-connecting terminals into the connector insertion hole from one side of the circuit board, so that the connector projects from the other side of the circuit board, and subsequently connecting the board-connecting terminals of the connector respectively to the solder portions at the one side of the circuit board. According to the present invention, it is preferable that the connector has a plurality of fixing metal members, and the above method further comprises a step of securing the fixing metal members fixedly to the one side of the circuit board by soldering simultaneously when the board-connecting terminals are connected to the solder portions, respectively.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view showing one example of a board-connecting connector used in a construction of and a method of connecting a connector to a base board, provided in accordance with the present invention;
FIG. 2A
is a transverse cross-sectional view of the board-connecting connector;
FIG. 2B
is a longitudinal cross-sectional view of the connector;
FIG. 3
is a perspective view showing the board-connecting connector connected to a circuit board by soldering.
FIG. 4
is a vertical cross-sectional view showing the manner of connecting two connectors, mounted respectively on two circuit boards, together;
FIG. 5
is a vertical cross-sectional view showing a condition in which the two connectors are fitted and connected together;
FIG. 6
is a perspective view showing a related construction of connecting a connector to a base board;
FIGS. 7A
to
7
D are views explanatory of a related reflow soldering process; and
FIG. 8
is a view showing a condition in which two connectors are mounted on opposite sides of the related circuit board, respectively.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A preferred embodiment of the present invention will now be described in detail with reference to
FIGS. 1
to
5
.
FIG. 1
shows one example of a board-connecting connector used in a construction of and a method of connecting a connector to a base board, provided in accordance with the present invention.
This board-connecting connector (hereinafter referred to as “connector”)
1
includes a rectangular connector housing
2
, made of a synthetic resin, a flange
3
formed integrally with a bottom of the connector housing
2
, and a plurality of board-connecting terminals
5
projecting outwardly at an upper side of the flange
3
.
Two rows of mating terminal insertion holes
7
are formed in a fitting surface (upper surface)
6
of the connector housing
2
. Fixing metal members
10
are provided respectively at lower ends of opposite end walls
8
of the connector housing
2
, and extend horizontally in contiguous relation to the upper surface
9
of the flange
3
. The fixing metal members
10
are fixedly secured to the connector housing
2
, for example, by insert molding.
Two rows of board-connecting terminals
5
are provided at opposite side surfaces (longer side surfaces)
4
of the flange
3
, respectively. An upper surface
11
a
of a connecting portion
11
of each board-connecting terminal
5
is disposed substantially flush with the upper surface
9
of the flange
3
, and serves as a solder-connecting surface for a circuit board
12
(FIG.
3
). Upper surfaces
10
a
of the fixing metal members
10
serve as solder-fixing surfaces for the circuit board
12
.
FIGS. 2A and 2B
show the transverse and longitudinal cross-sections of the connector
1
, respectively. As shown in
FIG. 2A
, two rows of terminal receiving chambers
13
are formed within the connector housing
2
, and female terminals
14
are received in the terminal receiving chambers
13
, respectively. The female terminals
14
, received respectively in one row of the terminal receiving chambers
13
, are disposed in symmetrical, opposed relation respectively to the female terminals
14
received respectively in the other row of terminal receiving chambers
13
. Each of the female terminals
14
has a box-like electrical contact portion
15
, and a base plate portion
16
extends from the electrical contact portion
15
, and is bent perpendicularly at the bottom of the connector housing
2
, and further extends horizontally in contiguous relation to a lower surface
17
of the flange
3
(or a surface of a groove), and this extension portion
18
is bent to rise vertically in contiguous relation to the side surface
4
of the flange
3
, and this rise portion
19
is bent to extend horizontally outwardly substantially flush with the upper surface
9
of the flange
3
, thereby providing the connecting portion
11
for the circuit board
12
(FIG.
3
). The board-connecting terminal
5
is defined by the rise portion
19
and the connecting portion
11
which are disposed outwardly of the flange
3
. The two rows of the board-connecting terminals
5
, provided respectively at the opposite sides of the flange
3
, are arranged symmetrically.
A resilient contact piece portion
22
for contact with a male terminal
21
in a mating connector
20
(
FIG. 4
) is provided within the boxlike electrical contact portion
15
of the female terminal
14
. As shown in
FIG. 2B
, the terminal receiving chambers
13
are separated from one another by partition walls
23
, and a terminal retaining spacer
25
is received in a space (chamber)
24
provided below the terminal receiving chambers
13
.
FIG. 3
shows a condition in which the connector
1
is connected to the circuit board
12
by soldering.
A connector insertion hole
26
, which is slightly larger in size than the fitting surface (upper surface)
6
of the connector housing
2
, is formed through the circuit board
12
. The connector housing
2
is inserted into the connector insertion hole
26
from a reverse side (surface)
27
of the circuit board
12
, and extends through the circuit board
12
to project from a front side (upper surface)
28
of the circuit board
12
. In this condition, the upper surfaces (solder-connecting surfaces)
11
a
of the connecting portions
11
of the board-connecting terminals
5
are connected respectively to solder portions
31
formed on the reverse side
27
of the circuit board
12
.
The solder-connecting surfaces
11
a face in the connector-inserting direction. Arrow A denotes the connector-inserting direction. The plurality of solder portions
31
, corresponding respectively to the plurality of board-connecting terminals
5
, are formed on the circuit board
12
at a peripheral edge portion of the connector insertion hole
26
. Solder portions, corresponding respectively to the fixing metal members
10
, are formed on the reverse side
27
of the circuit board
12
, and the fixing metal terminals
10
are fixed (soldered) to the reverse side
27
of the circuit board
12
simultaneously when the board-connecting terminals
5
are connected (soldered) respectively to the solder portions
31
.
In this embodiment, the solder portions
31
are formed only on the reverse side
27
of the circuit board
12
by a related reflow soldering method (see FIG.
7
). The solder portions
31
, corresponding respectively to the board-connecting terminals
5
, are provided at terminal portions of a printed circuit (not shown) and intermediate lands. The flange
3
is held against the reverse side
27
of the circuit board
12
. Incidentally, one side
27
of the circuit board
12
is the reverse side when the connector housing
2
projects upwardly, and when the circuit board
12
is used in an inverted manner, this side
27
is the front side.
For example, the connector
40
, shown in
FIG. 6
(the related construction), can be connected to the reverse side
27
of the circuit board
12
by soldering, in which case the connector
40
is projected at the reverse side
27
of the circuit board
12
. Even in the case where the solder portions
31
can be formed only on one side (reverse side)
27
of the circuit board
12
, the connector can be provided on either side (the front or the reverse side) of the circuit board
12
in a projected manner, and also the connectors
1
and
40
can be provided respectively on the opposite sides of the circuit board
12
in a projected manner.
And besides, there is no need to use the connector
41
of the through hole-connecting type as in the related construction. A plurality of through holes for soldering purposes do not need to be formed through the circuit board
12
, and therefore the printed circuit (not shown) can be formed over a larger area. Furthermore, the connector housing
2
extends through the circuit board
12
, and projects from the upper side
28
of the circuit board
12
whereas the flange
3
is disposed on the reverse side
27
of the circuit board
12
, and therefore the length of projecting of the connector
1
from the circuit board
12
is reduced, and besides the thickness of the circuit board
12
is absorbed by the height of projecting of the connector
1
, so that the structure is compact in size.
These effects are achieved by the above construction of connecting the connector to the board, and also can be achieved by a method of connecting the connector to the board, in which the insertion hole
26
, slightly larger than the fitting surface (upper surface)
6
of the connector housing
2
, is formed through the circuit board
12
, and reflow solder portions are formed on one side (reverse side)
27
of the circuit board
12
, and the connector housing
2
is inserted into the connector insertion hole
26
from the one side of the circuit board
12
, and projects from the other side (front side)
28
of the circuit board
12
, and the connecting portions of the board-connecting terminals
5
are connected respectively to the solder portions
31
on the one side (reverse side)
27
of the circuit board
12
. There can be used an arrangement in which the solder portions
31
are formed on the front side
28
of the circuit board
12
, and a related connector (for example, the connector
40
of
FIG. 6
) is provided on the front side
28
of the circuit board
12
.
FIGS. 4 and 5
show the manner of connecting the board-connecting male and female connectors
1
and
20
(connected respectively to two circuit boards
12
and
30
by soldering) together.
More specifically, the male connector
1
is connected to the circuit board
12
by soldering, and the female connector
20
is connected (soldered) to the circuit board
30
by a method as described above for the related construction, and the two circuit boards
12
and
30
are moved toward each other, thereby fitting (or connecting) the two connectors
1
and
20
together.
As shown in
FIG. 4
, the male connector
1
has the female terminals
14
received in the connector housing
2
as shown in
FIG. 2
, and each female terminal
14
is formed into the board-connecting terminal
5
via the base plate portion
16
, and the board-connecting terminals
5
are connected to the reverse side
27
of the circuit board
12
by the respective solder portions
31
.
The female connector
20
has the male terminals
21
provided in a fitting chamber
33
in a connector housing
32
, and the male terminals
21
extend through a bottom wall
34
of the fitting chamber
33
toward the circuit board
30
. These extension portions
35
are bent outwardly into a crank-shape, and distal end portions of these bent portions
36
are formed into connecting portions
37
, respectively, and these connecting portions
37
are connected respectively to solder portions
39
on a reverse side
38
of the circuit board
30
. A board-connecting terminal
42
is defined by the connecting portion
37
and the bent portion
36
. The two connectors
1
and
20
are disposed between the two circuit boards
12
and
30
in opposed relation to each other.
The two circuit boards
12
and
30
are moved toward each other, so that the two connectors
1
and
20
are fitted together as shown in FIG.
5
. The male terminals
21
are inserted into and connected to the electrical contact portions
15
of the female terminals
14
, respectively. The male terminal
21
is continuous with the board-connecting terminal
42
, and the female terminal
14
is continuous with the board-connecting terminal
5
, and therefore when the two connectors are connected together, the printed circuits (not shown), formed respectively on the two circuit boards
12
and
30
, are connected together. For example, the circuit boards
12
and
30
are provided in equipments of an automobile, electric connection boxes and others, and the equipments or the electric connection boxes are connected together via the two connectors
1
and
20
.
In the case where reflow solder portions can not be formed on the front side
28
of the circuit board
12
, the above connector solder-connecting construction (and method) is quite effective.
The board-connecting terminal
5
of the male connector
1
can be formed integrally with each male terminal
21
of the female connector
20
so that the female connector
20
can be connected by soldering to a surface
43
(
FIG. 4
) of the circuit board
30
as described above for the male connector
1
. In this case, a connector insertion hole (not shown) is formed through the circuit board
30
. The above connector solder-connecting construction (and method) is not limited to the reflow soldering, but can be applied to any other suitable solder portion-forming means.
In the present invention, even in the case where the solder portions can be formed only on one side of the circuit board, the connector is inserted into the connector insertion hole to be projected from the other side of the circuit board, and by doing so, the connector can be connected to the mating connector at the other side of the circuit board on which any solder-connecting portion is not provided. Therefore, various connector-connecting forms can be provided. And besides, the connectors can be easily, efficiently and positively connected respectively to the opposite sides (front and reverse sides) of the circuit board by a single reflow soldering operation (process). Therefore, a cumbersome solder-connecting process as required with a related connector of the through hole-connecting type is not needed, and the time and labor, required for the solder-connecting operation, are reduced, so that the efficiency of the operation is enhanced. Since the connector is received in the connector insertion hole, the dimension of the structure in the direction of the height is reduced by an amount corresponding to the thickness of the circuit board, so that the structure is prevented from become bulky.
In the present invention, the connector is fixedly secured to the circuit board by solder simultaneously when the board-connecting terminals of the connector are connected to the circuit board by soldering, and therefore the strength of fixing of the connector to the circuit board increases.
Claims
- 1. A construction for connecting a connector to a circuit board, comprising:a circuit board having a connector insertion hole formed therethrough; a plurality of solder portions formed on one of opposite sides of the circuit board; and a plurality of board-connecting terminals attached to a connector, the board-connecting terminals being respectively connected to the solder portions; wherein the connector is inserted into the connector insertion hole from one side of the circuit board, and each of the board-connecting terminals has a solder-connecting surface facing in a direction of insertion of the connector, and wherein the connector includes a flange continuously formed around a periphery of the connector, said flange having one side that faces the one side of the circuit board, and each of said solder-connecting surfaces of said board-connecting terminals is flush with the one side of said flange.
- 2. The construction of claim 1, further comprising a plurality of fixing metal members provided on the connector, and each of the fixing metal members having a solder-fixing surface facing in the direction of insertion of the connector.
- 3. A method of connecting a connector to a circuit board, comprising the steps of:forming a plurality of solder portions on a circuit board; forming a connector insertion hole through the circuit board; inserting a connector having a plurality of board-connecting terminals into the connector insertion hole from one side of the circuit board, so that the connector projects from the other side of the circuit board, wherein the connector includes a flange continuously formed around a periphery of the connector, the flange having one side that faces the one side of the circuit board, and solder-connecting surfaces of said board-connecting terminals are flush with the one side of said flange; and subsequently connecting the board-connecting terminals of the connector respectively to the solder portions at the one side of the circuit board.
- 4. The method of claim 3, wherein the connector has a plurality of fixing metal members, and wherein the method further comprises a step of securing the fixing metal members fixedly to the one side of the circuit board by soldering simultaneously when the board-connecting terminals are connected to the solder portions, respectively.
- 5. The construction of claim 1, wherein said board-connecting terminals of the connector includes a rise portion and a connecting portion, said rise portion extending along a side surface of said flange, and said connecting portion disposed outwardly from said flange so as to define the solder-connecting surface being flush with the one side of said flange.
- 6. The method of claim 3, wherein said board-connecting terminals of the connector include a rise portion and a connecting portion, said rise portion extending along a side surface of said flange, and said connecting portion disposed outwardly from said flange so as to define the solder-connecting surface being flush with the one side of said flange.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-052428 |
Mar 1999 |
JP |
|
US Referenced Citations (5)
Foreign Referenced Citations (2)
Number |
Date |
Country |
3710394-A1 |
Oct 1988 |
DE |
3-79170 |
Aug 1991 |
JP |