1. Field of the Invention
The present invention relates to a construction machine such as a hydraulic excavator, more particularly to a construction machine including a remote control valve provided beside an operator's seat, a hydraulic valve configured to be operated by the remote control valve, and a pilot hose interconnecting the remote control valve and the hydraulic valve.
2. Description of the Background Art
The background art of the present invention will be described by taking a small-size hydraulic excavator shown in
This hydraulic excavator comprises a crawler-type lower travelling body 1, an upper slewing body 2 mounted on the lower traveling body 1 in such a manner as to be slewable about an axis X perpendicular to a ground surface, and a work attachment AT attached to a front portion of the upper slewing body 2. The work attachment AT includes a boom 3, an arm 4, a bucket 5, and respective hydraulic actuators for actuating the boom 3, the arm 4 and the bucket 5, namely, a boom cylinder 6, an arm cylinder 7 and a bucket cylinder 8.
The upper slewing body 2 includes an upper frame 9, on which a seat stand 10, an operator's seat 11 provided on the seat stand 10, a canopy 12 covering the operator's seat 11 from above, various manipulation devices, an engine, and engine-related devices are mounted. Other than this canopy type, there is also a type in which a cabin is provided in place of the canopy 12, and the seat stand 10 and the operator's seat 11 are provided inside the cabin, namely, a cabin type.
As shown in
The control valve unit 15 is attached, for example, onto the bottom plate 13. On the other hand, there are provided a plurality of remote control valves 16 above the seat stand 10. The plurality of control valves included in the control valve unit 15 are operated by respective manipulations applied to the remote control valves 16.
Rearward of the underfloor space S stands upright a partition wall 17. The partition wall 17 defines an engine room 18 beneath the operator's seat 11 and the seat stand 10 supporting the operator's seat 11.
The plurality of remote control valves 16 are distributed on right and left sides of the operator's seat 11 in a front end region of an upper surface of the seat stand 10, and the remote control valves 16 and the control valves of the control valve unit 15 are interconnected through a plurality of pilot hoses H.
As regards routing of the pilot hoses H, particularly, routing of the pilot hoses H which interconnect the remote control valves 16 located on a side opposite to an entrance way for the operator's seat 11 (in the example shown in
It is an object of the present invention to provide a construction machine including a hydraulic valve such as a control valve, a remote control valve, and a pilot hose interconnecting the hydraulic valve and the remote control valve, the construction machine allowing the pilot hose to be easily routed with a simple structure.
Provided by the present invention is a construction machine which comprises: a lower travelling body; an upper slewing body including an upper frame and slewably mounted on the lower travelling body, the upper frame having a bottom plate and a floor plate provided above the bottom plate with a vertical interval; a seat stand located rearward of the floor plate and above the bottom plate of the upper frame; an operator's seat provided on the seat stand; a remote control valve provided just above a region of a front end portion of the seat stand, the region located at at least one of right and left sides of the operator's seat; a hydraulic valve configured to be operated by the remote control valve; and a pilot hose interconnecting the remote control valve and the hydraulic valve. The seat stand has an upper surface which includes a specific surface located beneath the remote control valve and a reference surface on which the operator's seat is provided, the upper surface of the seat stand being provided with a step between the specific surface and the reference surface so as to make the specific surface be lower than the reference surface and thus vertically enlarge routing space for routing the pilot hose beneath the remote control valve by the step.
There will be described embodiments according to the invention with reference to the drawings.
The embodiment described below is one example in which the present invention is applied to a small-size excavator shown in
The upper slewing body 2 includes an upper frame 19, on which a seat stand 20, an operator's seat 21 provided on the seat stand 20, various manipulation devices, an engine, and engine-related devices are mounted.
As shown in
The control valve unit 24 is attached onto the bottom plate 22. On the seat stand 20, there are provided a plurality of remote control valves 25, by respective manipulation applied to which the control valves included in the control valve unit 24 are operated.
Rearward of the underfloor space S, there stands upright a partition wall 26. The partition wall 26 defines an engine room 27 beneath the operator's seat 21 and the seat stand 20 supporting the operator's seat 21.
The plurality of remote control valves 25 are distributed at right and left sides of the operator's seat 21 in a region just above a front end region of an upper surface of the seat stand 20, the remote control valves 25 and the control valves of the control valve unit 24 being interconnected through respective pilot hoses H.
According to this embodiment, for routing of the pilot hoses H which connect the control valve unit 24 and the remote control valves 25 located on a side opposite to an entrance way, namely, inward remote control valves (that is, the right remote control valve in the embodiment shown in
The upper surface of the front end region of the seat stand 20 is provided with a step, which makes a specific surface 20a of the upper surface of the seat stand 20, the specific surface 20a being located beneath the inward remote control valve 25 (that is, a front right end region of the upper surface of the seat stand 20 in the embodiment shown in
The step enlarges a space located beneath the inward remote control valve 25, namely, a routing spaces C for routing the pilot hoses H as shown in
As shown in
The step wall 28 is provided with a through-hole 30, through which a cord-like member other than the pilot hoses H, such as an air conditioner hose to be used in a cabin type excavator or a wiring 31 shown in
The step thus provided in the seat stand 20 makes it possible to form a space having a larger height than that of a space provided for routing of a pilot hose in a conventional construction machine, for example, a space between the lower surface of the remote control valve and the upper surface of the seat stand 10 shown in
As an alternative measure against the problem with routing of the pilot hoses H, it is conceivable to provide a routing hole in a top wall of the seat stand 20 and route the pilot hoses H so as to let the pilot hoses H extend downwardly into the engine room 27 through the routing hole and reach the control valve unit 24; this routing, however, involves various negative effects, for example, a possibility that a device within the engine room 27 hinders the routing, a necessity of a sealing structure for preventing leakage of heat and sound from the routing hole, a requirement for a sealing structure for preventing ignition from being caused by leakage of oil from the pilot hose H, and the like.
On contrary, the routing through the routing space C enlarged by the step, not requiring the pilot hoses H to pass inside the engine room 27, is not hindered by a device in the engine room 27, and requires no sealing structures for oil-ignition prevention, noise insulation or heat shielding. In addition, maintenance work for the pilot hoses H routed outside the engine room 27 can be performed easily. Furthermore, the enlargement of the routing space C by the provision of the step permits the seat stand 20 to maintain its high strength and rigidity.
Besides, routing the pilot hoses H in the course extending from the routing space C along the front surface of the seat stand 20 to the underfloor space S does not involve a problem of occupying a foot space for an operator seated in the operator's seat 21 or hindering manipulation and entering/exiting of the operator. In addition, routing the pilot hoses H along the front surface of the seat stand 20 allows a maintenance work for the pilot hoses H to be easily performed.
Moreover, the inclination of the specific surface 20a, i.e., such an inclination that the specific surface 20a is gradually lowered with close to the outside of the seat stand 20, allows the pilot hoses H to be routed along the inclination, with just a reasonable bending having a gently curved shape, thereby further facilitating the routing.
Besides, the through-hole 30 provided in the step wall 28 enables the routing space C enlarged by the step to be effectively utilized as a space for routing an additional cord-like member such as an air conditioner hose.
It should be understood that the present invention is not limited to the above embodiment but allowed to include, for example, the following embodiments.
(1) While the routing structure in the above embodiment is designed for the pilot hoses H to be connected to the right (inward) remote control valve 25, the present invention may also be implemented for a pilot hose to be connected to the left remote control valve. Besides, in the case where the plurality of remote control valves provided above the seat stand 20 include a remote control valve for controlling a dozer provided forward of the lower travelling body 1, the present invention may also be applied to routing of a pilot hose interconnecting the remote control valve for the dozer and a dozer control valve which is a hydraulic valve operated by the dozer remote control valve.
(2) While the specific surface 20a in the above embodiment is situated in the front end region of the upper surface of the seat stand 20 so as to allow the pilot hoses H to be led out forward of the seat stand 20, the present invention is not limited thereto: for example, in the case of leading out a pilot hose rightward or leftward of the seat stand, it is preferable to situate the specific surface in a right or left end portion of the seat stand.
(3) The present invention can be applied to not only a hydraulic excavator but any other construction machine, such as a dismantling machine or a crushing machine, which is constructed by diverting a hydraulic excavator and includes a remote control valve provided above a seat stand, a hydraulic valve operated by the remote control valve, and a pilot hose interconnecting the remote control valve and the hydraulic valve.
As described above, the present invention provides a construction machine including a hydraulic valve such as a control valve, a remote control valve, and a pilot hose interconnecting the hydraulic valve and the remote control valve, the construction machine allowing the pilot hose to be easily routed with a simple structure. Provided is a construction machine comprising: a lower travelling body; an upper slewing body including an upper frame and slewably mounted on the lower travelling body, the upper frame having a bottom plate and a floor plate provided above the bottom plate with a vertical interval; a seat stand located rearward of the floor plate and above the bottom plate of the upper frame; an operator's seat provided on the seat stand; a remote control valve provided just above a region of a front end portion of the seat stand, the region located at at least one of right and left sides of the operator's seat; a hydraulic valve configured to be operated by the remote control valve; and a pilot hose interconnecting the remote control valve and the hydraulic valve. The seat stand has an upper surface which includes a specific surface located beneath the remote control valve and a reference surface on which the operator's seat is provided, the upper surface of the seat stand being provided with a step between the specific surface and the reference surface so as to make the specific surface be lower than the reference surface and thus vertically enlarge routing space for routing the pilot hose beneath the remote control valve by the step.
The step, making the specific surface beneath the remote control valve be lower than the reference surface, enables a space for routing the pilot hose beneath the remote control valve to be enlarged, thereby allowing the pilot hose to be easily routed, with just gentle and limited bending and in the course passing the outside of an engine room. This enables simplifying joint structure for routing the pilot hose to thereby reduce component cost and reducing a workload in an assembling line to thereby enhance production efficiency to be achieved. In addition, differently from the case of routing the pilot hose inside an engine room, a device within the engine room cannot hinder the pilot hose from being routed, and there is no need for sealing structures for oil-ignition prevention, noise insulation and heat shielding. Furthermore, routing the pilot hose outside the engine room allows a maintenance work therefor to be easily performed. Besides, the enlargement of the routing space by the provision of the step in the seat stand allows the seat stand to maintain its high strength and rigidity.
As a specific embodiment, preferable is one where: the specific surface is situated in a front end region of the upper surface of the seat stand at a side opposite to an entrance way for the operator's seat; the hydraulic valve configured to be operated by the remote control valve provided just above the specific surface is installed in an underfloor space between the bottom plate and the floor plate; and the pilot hose is routed in a course extending from the routing space to the underfloor space along a front surface of the seat stand. The thus routed pilot hose cannot occupy a foot space for an operator seated in the operator's seat or hinder an operator from manipulation or entering/exiting. Besides, maintenance work for the pilot hose routed along the front surface of the seat stand is further facilitated.
The specific surface is, preferably, inclined toward an outside of the seat stand. The inclination of the specific surface allows the pilot hose to be routed while being bent just in a gently curved shape along the inclination of the specific surface, that is, reasonably bent, thereby further facilitating the routing.
It is preferable that the seat stand has a step wall between the specific surface and the reference surface, the step wall being provided with a through-hole which allows a cord-like member other than the pilot hose to be routed through the through-hole. The through-hole enables the routing space enlarged by on the step to be effectively utilized as a space for routing a cord-like member other than the pilot hose, such as an air conditioner hose to be installed in a cabin type excavator, or a wiring.
This application is based on Japanese Patent application No. 2013-224971 filed in Japan Patent Office on Oct. 30, 2013, the contents of which are hereby incorporated by reference.
Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention hereinafter defined, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2013-224971 | Oct 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8632122 | Kimura | Jan 2014 | B2 |
20080005937 | Nakayoshi et al. | Jan 2008 | A1 |
20130025170 | Caillieret | Jan 2013 | A1 |
20130067901 | Masuda | Mar 2013 | A1 |
20150115659 | Kurushima | Apr 2015 | A1 |
20150115660 | Sasaki | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
716021 | Jan 1942 | DE |
2-132759 | Nov 1990 | JP |
2001-107390 | Apr 2001 | JP |
2002-227249 | Aug 2002 | JP |
2006-77544 | Mar 2006 | JP |
2007-303213 | Nov 2007 | JP |
2008-31817 | Feb 2008 | JP |
2009-263985 | Nov 2009 | JP |
2010-024715 | Feb 2010 | JP |
2010-265582 | Nov 2010 | JP |
Entry |
---|
Extended European Search Report issued Mar. 5, 2015 in Patent Application No. 14189001.2. |
Japanese Office Action mailed Aug. 18, 2015, in Application No. 2013-224971. |
Number | Date | Country | |
---|---|---|---|
20150115657 A1 | Apr 2015 | US |