Embodiments of the present invention will be described with reference to
The embodiments are exemplified in a case where the present invention is applied to a hydraulic excavator.
A basic construction of the upper rotating body 2 i.e., the following points are the same as THE RELATED ART shown in
(A) a point that on a rear part of an upper frame 3, is formed an engine room 12 whose periphery is covered by a guard member including a counterweight 17 (refer to
(B) a point that in the engine room 12, are installed an engine 13 and related devices;
(C) a point that a bonnet 18 for opening and closing the upper surface side portion of the engine room 12 is provided;
(D) a point that as an access passage for opening the bonnet 18 and performing maintenance of the engine and the like from the upper surface side of the engine room, up and down steps 19 are provided in a front part on the right side.
In each of the figures, the same parts as THE RELATED ART are represented by the same numerals.
Further, in the present embodiment, as well as THE RELATED ART, a step 21 serving as a foothold in which a worker going up the up and down steps 19 can open and close the bonnet 18 and perform the maintenance work on the front side of the engine room 12 is provided on the upper frame 3. Below the step 21, is formed a duct D for exhausting the air within the engine room 12 to the exterior.
This point will be described in detail with reference to each of the figures.
A partition wall 22 for partitioning the front surface side of the engine room 12 from the exterior is provided on the upper frame 3.
The partition wall 22 is divided into separate two members, i.e. a lower partition plate 23 for partitioning a lower part of the front surface of the engine room; and an upper partition plate 24 for partitioning an upper part. In the lower partition plate 23, is forwardly projected a duct lower surface plate 25, and in the upper partition plate 24 is forwardly projected the step 21 respectively.
Both the partition plates 23 and 24 are attached on the upper frame in a state that the step 21 and the duct lower surface plate 25 are vertically opposed to each other and an exhaust port 26 and a duct space S which communicate with the engine room 12 are formed between the step 21 and the duct lower surface plate 25.
As a part of partition attachment means, on the upper frame, are aligned a pair of left and right attachment plates 27 with a gap. Both left and right ends of the step 21 and the duct lower surface plate 25 are attached to and supported by the attachment plates 27.
In
In this way, the partition wall 22 is formed by both the partition plates 23 and 24. On the lower side of the step 21, are formed the exhaust port 26 for exhausting the air within the engine room 12 to the exterior, and the duct D for performing a sound absorbing operation while guiding the exhausted air forwardly in a state that the step 21 is an upper surface wall thereof, the duct lower surface plate 25 is a lower surface wall thereof, and the attachment plates 27 are left and right side walls.
The upper partition plate 24 is detachably attached at all attachment parts including attachment parts of the step 21 corresponding to the step attachment portions 27a of the attachment plates 27 by attachment means such as a bolt and a nut. As a result, as shown in
The duct lower surface plate 25 of the lower partition plate 23 also serves as a rotation motor cover for covering a rotation hydraulic motor 28 (refer to
According to this construction, the duct D for improving the exhaust and cooling efficiency from the engine room 12 is provided below the step 21 serving as a foothold of the maintenance work, in a state that the step 21 also serves as the upper surface wall of the duct. By this, even in the small type excavator, it is possible to reasonably form the duct with the minimum number of parts and low cost without taking an extra for the duct from the limited space.
In this case, the step 21 originally has width and depth sizes which are sufficient for a worker to get on and safely work. By utilizing the step 21 as the upper surface wall of the duct, it is possible to form the duct D having a sufficient size for performing the exhaust and cooling operation.
Further, the partition wall 22 is divided into the lower partition plate 23 and the upper partition plate 24, the step 21 and the duct lower surface plate 25 which are duct elements are attached to the plates respectively, and both the partition plates 23 and 24 are separately attached to the upper frame 3 in a state that the duct space S is formed between the plates. Therefore, since there is no need for directly connecting both the partition plates 23 and 24 to each other, an assembling performance of the partition wall 22 and the duct D is improved.
In addition, the upper partition plate 24 provided with the step 21 is detachably mounted to the upper frame 3. Therefore, as shown in
Meanwhile, since the duct lower surface plate 25 also serves as the rotation motor cover, a use of one type of part for several purposes is facilitated. Therefore, the number of parts is reduced and the assembling performance and the cost become further favorable.
In the present embodiment, as another construction, in a right side end of the upper partition plate 24 are openably formed an auxiliary exhaust port 29 (refer to
By providing the auxiliary duct 31, it is possible to further improve the exhaust and cooling efficiency of the engine room 12 and a sound absorbing effect. Further, by providing the auxiliary step 30 at a location which is one step higher than the step 21, the foothold is improved and the maintenance work becomes convenient.
In order to improve the sound absorbing effect in the duct D or the like, a sound absorbing material 32 is provided as shown in
(1) In the above embodiment, the partition wall 22 is divided into the lower partition plate 23 and the upper partition plate 24. However, the partition wall 22 may be formed vertically continuously. In this case, the exhaust port 26 is openably formed in the partition wall 22, and the step 21 and the duct lower surface plate (rotation motor cover) 25 are attached to a front surface thereof.
(2) In the above embodiment, the air within the engine room 12 is guided from the exhaust port 26 to the duct D. However, an air guiding tube may be connected to an exhaust port provided in a different location from the duct D, and a front end thereof may be coupled to the duct D.
(3) The present invention is not limited to the hydraulic excavator, but widely applied to a construction machine in which an engine room and a bonnet for opening an closing the engine room are disposed on a rear part of an upper rotating body, and a step for opening and closing the bonnet and performing maintenance is provided.
Although the invention has been described with reference to the preferred embodiments in the attached figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-219670 | Aug 2006 | JP | national |