The present invention relates to construction machines and more particularly to a technical field which supports an operator's operation in excavation work.
Excavation support devices which support manipulation of an operator's operation in excavation work when making a three-dimensional target shape from an original landform by a construction machine are known. Examples are a machine guidance which displays the positional relation between the target shape and the work equipment (for example, a bucket or the like) on a monitor instead of the finishing stake used in the conventional construction work, a machine control which semi-automatically controls the construction machine according to the deviation between the target shape and the position of the work equipment, and the like.
These excavation support devices calculate the position of the working point of the work equipment according to the work equipment's posture acquired by a posture sensor on the basis of the dimensions of the work equipment. For example, as shown in
The calculation accuracy of the position of the working point is affected by mechanical backlash. Generally, a clearance is provided between the pin in the swing center of each link and the pin hole and an external force causes eccentricity of the swing center of the link, thereby generating a mechanical backlash. For example, when a stroke sensor which detects the stroke of the actuator for driving each link is used as a posture sensor, due to the influence of mechanical backlash an error occurs in the calculation to find the link angle from the stroke. Therefore, in order to calculate the position of the working point accurately, the direction of eccentricity must be detected or calculated from the direction of the load applied to the swing center of the link.
Patent Literature 1 discloses a control system which includes not only a posture sensor but also a load sensor and calculates the position of the working point according to signals from the posture sensor and the load sensor. In the control system described in Patent Literature 1, the calculation accuracy of the position of the working point is improved by correcting the relative angle of each link depending on the clearance of the swing center and the load direction calculated according to a signal from the load sensor.
PATENT LITERATURE 1: U.S. Pat. No. 6,934,616
However, the control system described in Patent Literature 1 has a problem that since the external force applied to each link is calculated on the assumption that the direction of the force of gravity is downward with respect to the body, for example, if the body is tilted, an error occurs in the load direction and thereby the calculation accuracy of the position of the working point declines.
The present invention has been made with the view of the above problem and an object thereof is to provide a construction machine with high calculation accuracy of the position of the working point.
In order to achieve the above object, according to a typical aspect of the present invention, a construction machine is characterized by including: a body; work equipment provided on the body, having a plurality of swingable work elements; a plurality of hydraulic actuators for driving the work equipment; a plurality of ground angle sensors for detecting ground angles of the work elements; and an excavation support device including an information processing device for generating information to support excavation work of an operator, in which the information processing device includes: a load information acquiring section for acquiring load information including a load direction in the swing center of at least one of the work elements according to signals from the ground angle sensors; and a working point position calculating section for calculating the position of a working point of the work equipment according to the signals from the ground angle sensors and the load information from the load information acquiring section.
According to the present invention, a construction machine with high calculation accuracy of the position of the working point can be provided. Other and further objects, features, and advantages will appear more fully from the following description of embodiments.
Next, embodiments of the construction machine according to the present invention will be described referring to drawings.
The work equipment 15 is swingably attached to the front of the upperstructure 10. The upperstructure 10 includes a cab, and in the cab, operation devices such as a traveling right operating lever device 1a, traveling left operating lever device 1b, and right operating lever device 1c and left operating lever device 1d for specifying the movement of the work equipment 15 and the swing motion of the upperstructure 10 are arranged.
The work equipment 15 is a multi-joint structure which has a boom 11, arm, 12, and bucket 8 which are swingable work elements, in which the boom 11 swings vertically with respect to the upperstructure 10 by extension/contraction of a boom cylinder 5, the arm 12 swings vertically and forward/backward with respect to the boom 11 by extension/contraction of an arm cylinder 6, and the bucket 8 swings vertically and forward/backward with respect to the arm 12 by extension/contraction of a bucket cylinder 7. Also, the boom cylinder 5 includes a boom bottom pressure sensor 17a for detecting the bottom side pressure of the boom cylinder 5 and a boom rod pressure sensor 17b for detecting the rod side pressure of the boom cylinder 5. Also, the arm cylinder 6 includes an arm bottom pressure sensor 17c for detecting the bottom side pressure of the arm cylinder 6.
In order to calculate the position of an arbitrary point of the work equipment 15, the construction machine includes: a first ground angle sensor 13a located near the connection between the upperstructure 10 and the boom 11 to detect the angle of the boom 11 with respect to the horizontal plane (boom angle); a second ground angle sensor 13b located near the connection between the boom 11 and the arm 12 to detect the angle of the arm 12 with respect to the horizontal plane (arm angle); a third ground angle sensor 13c located at a bucket link 8a for connecting the arm 12 and the bucket 8 to detect the angle of the bucket link 8a with respect to the horizontal plane (bucket angle); and a body ground angle sensor 13d to detect the tilting angle (roll angle, pitch angle) of the upperstructure 10 with respect to the horizontal plane.
The ground angle sensors 13a to 13d as examples of posture sensors each include at least a two-axis acceleration sensor and can detect the ground angle and the direction of load. The posture sensor signals detected by these ground angle sensors 13a to 13d and the signals from the above boom bottom pressure sensor 17a, boom rod pressure sensor 17b, and arm bottom pressure sensor 17c as examples of pressure sensors are sent to an information processing device 100 which will be described later. Each of the posture sensor signals sent from the ground angle sensors 13a to 13d is at least a two-dimensional accelerator vector.
A control valve 20 controls the flow (flow rate and direction) of pressure oil supplied from the hydraulic pump device 2 to each of the hydraulic actuators such as the above swing hydraulic motor 4, boom cylinder 5, arm cylinder 6, bucket cylinder 7, and left and right traveling hydraulic motors 3b and 3a. This embodiment is described as a structure in which the pressure sensors 17a to 17c are provided on the boom cylinder 5 and arm cylinder 6, but instead the pressure sensors 17a to 17c may be provided on the control valve 20 or in the pipe between the control valve 20 and each of the cylinders 5 and 6.
[Excavation Support Device of the Construction Machine]
The information processing device 100 receives a first posture sensor signal, second posture sensor signal, third posture sensor signal and body posture sensor signal from the first ground angle sensor 13a, second ground angle sensor 13b, third ground angle sensor 13c and body ground angle sensor 13d respectively, receives a boom bottom pressure and boom rod pressure from the boom bottom pressure sensor 17a and boom rod pressure sensor 17b respectively, receives an arm bottom pressure from the arm bottom pressure sensor 17c, receives design surface information from a design data input device 18, and sends the calculation result to the display device 200. Details of the calculations made by the information processing device 100 will be described later, but the calculations made by the display device 200 are the same as in the conventional technique, so detailed description thereof is omitted.
[Information Processing Device]
The dimension storage section 110 stores dimension information and ∠ of the work equipment 15 and eccentricity amount information δ of each swing center of the work equipment 15 in advance and sends information , ∠ and δ to the load information acquiring section 130 and the working point position calculating section 150.
The angle calculating section 120 receives a posture sensor signal a from each of the ground angle sensors 13a to 13d and sends the ground angles θ of the boom 11, arm 12, bucket link 8a, and upperstructure 10 to the load information acquiring section 130 and the working point position calculating section 150. In order for the angle calculating section 120 to calculate the ground angle θ, for example, Formula (1) is used:
Here, i=1, 2, 3 represent the boom 11, arm 12, and bucket 8 respectively, and aix and aiz represent the acceleration vector components of each of them. The method for calculating the ground angle θ is not limited to this; instead, the ground angle θ may be calculated by the known sensor fusion method, using a sensor with a gyroscope as a ground angle sensor.
The load information acquiring section 130 receives a posture sensor signal a from each of the ground angle sensors 13a to 13d, pressure sensor signals P from the pressure sensors 17a to 17c, dimension information and ∠ from the dimension storage section 110, ground angles θ of the boom 11, arm 12, and bucket link 8a from the angle calculating section 120, and target surface information Ls and θs from the target surface information setting section 140 and sends information F of load applied to the boom 11, arm 12, and bucket 8 to the working point position calculating section 150. Details of the calculations made by the load information acquiring section 130 will be described later.
The target surface information setting section 140 receives design surface information from the design data input device 18 and position information of a working point W from the working point position calculating section 150, extracts the design surface nearest to the working point W among a plurality of design surfaces, as a target surface, and sends the distance Ls and angle θs of the target surface with respect to the reference point of the body (for example, point indicating the boom foot pin height of the swing center) as target surface information to the load information acquiring section 130 and the display device 200.
The working point position calculating section 150 receives the dimension information and ∠ and eccentricity amount information δ of the work equipment 15 from the dimension storage section 110, the ground angles θ of the boom 11, arm 12, bucket link 8a, and upperstructure 10 from the angle calculating section 120, and the information F of load applied to the boom 11, arm 12, and bucket 13 from the load information acquiring section 130, calculates the position of the working point W, and sends it to the display device 200 and the target surface information setting section 140. Details of the calculations made by the working point position calculating section 150 will be described later.
[Load Information Acquiring Section]
The calculations made by the load information acquiring section 130 are described below referring to
In this embodiment, calculations are made only for excavation by arm crowding on the assumption that the rod pressure of the arm cylinder 6 is 0. However, if calculations are also made for arm dumping, it is desirable to acquire the rod pressure of the arm cylinder 6. FB and FE are the external forces applied to the swing center B of the boom 11 and the swing center E of the arm 12 respectively. When a point B is assumed as an origin and the direction from the point B to a point E is assumed as an x axis, the equilibrium of these forces is expressed by Formula (2).
[Formula 2]
FBBE+FbmBE+FamBE+FG1BE+FEBE=0 (2)
Here, the superscript suffix of each external force represents the x axis of the coordinate system.
The equilibrium of moments around the point B is expressed by Formula (3).
[Formula 3]
−FbmzBELBC cos ∠CBE+FbmxBELBC sin ∠CBE−FamzBELBD cos ∠DBE+FamxBELBD sin ∠DBE−FG1zBELBG1 cos∠G1BE+FG1xBELBG1 sin ∠G1BE−FEzBELBE=0 (3)
FB and FE are unknown and the calculations cannot be made only by Formulas (2) and (3). Therefore, the external force applied to the arm 12 is also added for the calculations. The arrows shown in
[Formula 4]
FEBE+FamBE+FG2FE+FKFE=0 (4)
In addition, the equilibrium of moments around the point E is expressed by the following formula.
[Formula 5]
FamzFELFE−FG2zFELEG2 cos(π−∠FEG2)+FG2xFELEG2 sin(π−∠FEG2)−FKzFELER cos(π−∠FEK)+FKxFELEK sin(π−∠FEK)=0 (5)
Here, FE is an external force applied to both the boom 11 and the arm 12, which is applied to them in opposite directions.
The coordinate transformation of FE between the coordinate system with the point B as the origin and the coordinate system with the point E as the origin is expressed by Formula (6).
The z components of Formulas (4), (5), and (6) are combined and compiled into Formula (7).
Here, FBEEz on the right side is a transformation of Formula (3) and MamG is the first to third terms of the left side of Formula (5), so they can be calculated using Formulas (8) and (9), respectively.
[Formula 8]
FKzBE=(−FbmcBELBC cos ∠CBE+FbmxBELBC sin ∠CBE−FamzBELBD cos ∠DBE+FamxBELBD sin ∠DBE−FG1zBELBG1 cos ∠G1BE+FG1xBELBG1 sin ∠G1BE)/LBE=0 (8)
[Formula 9]
MamG=FamzFELFE−FG2zFELEG2 cos(π−∠FEG2)+FG2xFELEG2 sin(π−∠FEG2) (9)
As mentioned above, the external forces applied to the swing centers of the boom 11, arm 12, and bucket 8 are known by calculating FB using Formula (2) after calculating the external forces FE and FK from Formula (7). In this embodiment, since the forces of gravity FG1 and FG2 are calculated on the basis of the acceleration vector as the posture sensor signal a, the external forces applied to the swing centers of the boom 11, arm 12, and bucket 8 can be calculated accurately even when the body (namely, the undercarriage 9 and the upperstructure 10) is tilted.
In this embodiment, in order to simplify the explanation, the external force applied to the bucket 8 is not added in the calculations; however, by installing a pressure sensor on the bucket cylinder 7 and taking the thrust force of the bucket cylinder 7 into consideration, the external force applied to the bucket 8 may be added in the calculations.
Next, the calculation of the rotation direction of the bucket 8 which is made by the load information acquiring section 130 will be explained referring to
As mentioned above, even when a pressure sensor is not provided on the bucket cylinder 7, the rotation direction of the bucket 8 can be calculated according to the angle of the target surface in a simple manner.
[Working Point Position Calculating Section]
The working point position calculating section 150 calculates the position of the working point W according to the ground angles θ of the boom 11, arm 12, bucket link 8a, and upperstructure 10 from the angle calculating section 120. Here, in this embodiment, the ground angles θ of the boom 11, arm 12 and upperstructure 10 are directly detected using the ground angle sensors 13a, 13b, and 13d and thus these angles are not affected by mechanical backlash. Meanwhile, the angle of the bucket 13 is calculated according to the ground angle θ of the bucket link 8a and thus it is affected by mechanical backlash. Therefore, the ground angle θbk of the bucket 8 is calculated from the ground angle θbk1 of the bucket link 8a from the angle calculating section 120 and the rotation direction of the bucket 8 attributable to mechanical backlash from the load information acquiring section 130, using Formula (10).
Here, δI and δJ represent the eccentricity amounts of swing centers I and J (see
Next, the position of the working point W is calculated from the ground angles θbn and θam of the boom 11 and arm 12 from the angle calculating section 120, the external forces FB, FE, and FK applied to the swing centers of the boom 11, arm 12, and bucket 8 as load information from the load information acquiring section 130, and the rotation direction of the bucket 8 attributable to mechanical backlash, using Formula (11).
Here, the superscript suffix Body represents the coordinate system based on the upperstructure 10. δB, δE, and δK represent the eccentricity amounts of the swing centers B, E, and K of the boom 1, arm 12, and bucket 8 respectively, which are received from the dimension storage section 110.
Also, θB, θE, and θK represent the directions of the external forces applied to the swing centers B, E, and K of the boom 1, arm 12, and bucket 8 with respect to the upperstructure 10. By adding an eccentricity amount in the opposite directions to them, the amount of movement in the translation direction attributable to the mechanical backlash is corrected so that the calculation accuracy of the position of the working point W can be improved.
As explained above, according to the first embodiment, the direction and magnitude of the force of gravity are detected using the ground angle sensors 13a to 13d including at least a two-axis acceleration sensor and the external forces applied to the swing centers B, E, and K of the work equipment 15 are calculated according to the force of gravity, so even when the body is tilted, the calculation accuracy of the position of the working point W attributable to mechanical backlash can be improved. In addition, the pressures of two or more hydraulic actuators (specifically, the boom cylinder 5 and arm cylinder 6) which drive the work equipment 15 are detected to calculate the magnitude and direction of the excavation reactive force and calculate the external forces applied to the swing centers B, E, and K of the work equipment 15 by the excavation reactive force, so that the calculation accuracy of the position of the working point W which is attributable to mechanical backlash can be improved.
Next, a construction machine according to the second embodiment of the present invention will be described referring to drawings. The same elements as in the first embodiment are designated by the same reference signs and description thereof is omitted.
Here, the external measured values are the coordinates of the swing centers of the boom 11, arm 12, and bucket 8 which are measured using a total station or the like. Only when these are received, the dimension setting section 160 calculates the dimension information and ∠ of the work equipment 15 and the eccentricity amount information δ of each swing center and when these are not received, the dimension setting section 160 continues to send the previously calculated values.
The calculations made by the dimension setting section 160 are described below referring to
The dimension setting section 160 decides whether or not there is any previous external measured value (S1601) and if there is a previous external measured value (S1601/YES), comparison is made between the load direction of the swing center of the boom 11 at the time of input of the previous external measured value and that at the time of input of the current external measured value (S1602). If the load directions are opposite (S1602/YES), the dimension setting section 160 sets a dimension value LBE of the boom 11 which will be described later (S1605) and sets an eccentricity amount δB of the swing center of the boom 11 which will also be described later (S1606).
Meanwhile, if there is no previous external measured value (S1601/NO) or the load directions are not opposite (S1602/NO), the dimension setting section 160 stores the current external measured value (S1603) and stores the load direction of the swing center of the boom 11 at the time of input of the current external measured value (S1604).
At Step S1605, the dimension value LBE of the boom 11 is calculated from the current external measured value and the previous external measured value, using Formula (12).
where the superscript suffixes of the respective swing centers E and B of the boom 11 and arm 12 represent times of input of external measured values, in which i=1 represents the previous value and i=2 represents the current external measured value.
At Step S1606, the eccentricity amount δB of the swing center of the boom 11 is calculated from the current external measured value and the previous external measured value, using Formula (13).
The calculations made by the dimension setting section 160 are not limited to the above; the load direction may be divided into n directions to calculate the dimension and eccentricity amount from n external measured values and in that case, Formulas (14) and (15) are used, respectively.
Specifically, the dimension is calculated from the average of the n external measured values and the eccentricity amount is calculated from the dispersion. In Formula (12), twice as much as the standard deviation is taken as the eccentricity amount; however, instead, one time or three times as much as the standard deviation may be taken.
As explained above, according to the second embodiment, the same advantageous effects as in the first embodiment are brought about and also by resetting the dimension and eccentricity amount using external measured values, the calculation accuracy of the position of the working point W can be maintained even if the eccentricity amount changes because of wear or the like. Furthermore, by making calculations using external measured values in the case that the load directions are different, deviation of external measured values can be avoided and the dimension and eccentricity amount can be set accurately.
When the posture sensor signals a from the ground angle sensors 13a to 13d are the same, the difference between the case of calculating the position of the working point W according to the present invention and the case of calculating the position of the working point W using the conventional technique (only the ground angle sensor) is explained below referring to
At this time, error δS in the height direction between the working point W and the working point W′ is expressed by Formula (16).
[Formula 16]
δS=−δB sin θB−δK sin θE−δK sin θK−Lbk{sin(θ0bk−θBody)−sin(θbk−θBody)} (16)
where θ0bk represents the ground angle of the bucket in the case that the calculation is made with δI and δJ=0 in Formula (10)
As explained so far, when the present invention is applied, the position of the working point W can be calculated in consideration of the mechanical backlash depending on the load direction, so the influence of the excavation reactive force can be suppressed and the error δS can be eliminated. Therefore, the calculation accuracy of the position of the working point W is improved, largely contributing to support of the operator's work. In addition, since work support information based on the accurately calculated working point W can be displayed on the display device 200, the operator's working efficiency can be improved.
The present invention is not limited to the above embodiments but includes various variations. For example, the above embodiments have been described in detail for easy understanding of the present invention and the present invention is not limited to an embodiment which includes all the described elements.
Number | Date | Country | Kind |
---|---|---|---|
JP2016-226255 | Nov 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/038570 | 10/25/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/092533 | 5/24/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6374147 | Rockwood | Apr 2002 | B1 |
6934616 | Colburn et al. | Aug 2005 | B2 |
7007415 | Koch | Mar 2006 | B2 |
7631445 | Harrell | Dec 2009 | B2 |
7669354 | Aebischer | Mar 2010 | B2 |
9752298 | Nakamura | Sep 2017 | B2 |
10422111 | Yamada | Sep 2019 | B2 |
20040117095 | Colburn et al. | Jun 2004 | A1 |
20170284069 | Machida | Oct 2017 | A1 |
20170298595 | Machida | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
105518220 | Apr 2016 | CN |
Entry |
---|
Chinese Office Action received in corresponding Chinese Application No. 201780052651.7 dated Aug. 19, 2020. |
International Search Report of PCT/JP2017/038570 dated Jan. 30, 2018. |
Number | Date | Country | |
---|---|---|---|
20190284783 A1 | Sep 2019 | US |