Construction of a 3D printing device for producing components

Information

  • Patent Grant
  • 10213831
  • Patent Number
    10,213,831
  • Date Filed
    Thursday, November 21, 2013
    11 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
The invention relates to a device for producing three-dimensional models, comprising a coater, which includes an ejection opening, at least one print head, which is mounted on a print axis, the ejection opening of the coater being disposed toward the top in the coating direction, and the print head being disposed counter to the coating direction with the opposite orientation on the printing axis behind the coater in the coating direction; the invention also relates to a method for producing three-dimensional models.
Description
FIELD

The invention relates to a device as well as a method for constructing three-dimensional models in layers.


CLAIM OF PRIORITY

This application is a national phase filing under 35 USC § 371 from PCT Application serial number PCT/DE2013/000685 filed on Nov. 21, 2013, and claims priority therefrom. This application further claims priority from German Patent Application DE 10 2012 022 859.7 filed on Nov. 25, 2012. PCT/DE2013/000685 and DE 10 2012 022 859.7 are both incorporated herein in their entireties by reference.


BACKGROUND

A method for producing three-dimensional models from computer data is described in the European patent specification EP 0 431 924 B1. A first material, a particulate material in this case, is applied in a thin layer onto a building platform, which, if necessary, is surrounded by a container, and a second material, which may form a solid with the first material, is subsequently applied thereupon. According to EP 0 431 924 B1, a particulate material is provided, for example, as the first material, and a binder material is then selectively printed onto the particulate material using a print head. The particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a desired height of the model is achieved. A three-dimensional model is thereby produced from the printed and solidified areas.


After it is completed, the model produced from solidified particulate material is embedded in loose particulate material and is subsequently removed therefrom.


Other powder-supported rapid prototyping processes work in a similar manner, for example selective laser sintering or electron beam sintering, in which a loose particulate material is also deposited in layers and selectively solidified with the aid of a controlled physical radiation source.


All these methods are referred to collectively below as “three-dimensional printing methods” or 3D printing methods.


Another method for constructing a layered body from loose particulate material is known from WO2011/127897A2. The build process takes place according to the “continuous 3D printing” principle and is another variant of the powder-processing 3D printing method.


SUMMARY

It is possible to produce continuous components, also referred to as molded parts, using an endless, horizontal layer feed.


In continuous 3D printing, the component length is almost unlimited.


In conventional systems, the components are produced in layers vertically from top to bottom. If the component size exceeds the building height predefined for the specific system, the component must be segmented and produced in multiple build processes. For this purpose, the finished components must be consecutively removed from the system and placed on each other to form an accurate fit and glued. In this case, the production of large components is limited in terms of size and productivity.


In continuous 3D printing, the layer feed takes place in the horizontal direction using a continuous conveyor belt. Since gravity prevents a layer from being applied perpendicularly to the layer feed, the individual layers are applied spatially at an angle to the perpendicular. The angle is selected in such a way that it is smaller than the specific angle of repose of the corresponding powder material.


The build plane abuts an enclosed conveyor line, whose length is adapted, e.g., to the method-dependent hardening duration. At the end of the conveyor line, the finished components enter a removal area or unpacking area. There, the components are freed of unbound powder material and removed without having to interrupt the production of additional parts. In the case of particularly long parts, this area may be expanded, e.g., with roller tracks.


However, the known devices and methods for building models, also referred to as molded parts, in layers, have construction-induced disadvantages which may result in inaccuracies or defects in the molded parts during their manufacture. In known devices and methods, for example, the coater is moved back over the coated plane after the coating operation. It is possible for particulate material to undesirably detach from the coater and fall onto the build plane (build space). Particulate material may thus come to rest in places where it is not intended to be. As a result, a collision between the print head and an accumulation of particulate material thus created may occur. This may damage both the print head and the build space and thus the components.


It is equally unfavorable when fluids enter the build space uncontrollably. They may damage the build space and thus the molded body to be produced and even render the produced molded parts unusable.


As a result, there has long been a need to avoid or at least reduce the aforementioned disadvantages of the prior art.


The object of the present invention is therefore to provide a device and a method which avoid or at least improve the disadvantages of the prior art and with which the method for producing molded parts may be carried out in an improved manner.


The object according to the invention is achieved by the device according to claim 1 and the method according to claim 9.


Preferred embodiments are implemented in the subclaims.


In particular, the invention relates to a device and a method for producing three-dimensional models or molded parts, the device being characterized by an advantageous arrangement of the function units. In particular, this construction in layers according to the invention is used in the inclined bed method of 3D printing.







DETAILED DESCRIPTION

The different aspects of the invention are illustrated in greater detail below.


In one aspect, the invention is a device for producing three-dimensional models, comprising a coater (1) which has an ejection opening, at least one print head (2), which is mounted on a print axis, the ejection opening of the coater being disposed at the top in the coating direction and the print head being disposed counter to the coating direction with the opposite orientation on the print axis behind the coater in the coating direction.


All known coaters may be used which are suitable for implementing the idea of the invention. The coater may be any coater which has a leveling element, or a means having the same function, counter to the coating direction. This prevents particulate material from being able to slide or fall down in the direction of the print head. Any embodiments may be used which push the particulate material to be applied upward, such as rollers, blades, lips, etc., and which prevent a described sliding of the particulate material.


The special arrangement of the print head and coater is particularly advantageous during operation of the system, since the print head and the coater may immediately approach the peripheral units after each operation. With this arrangement, a new layer of particulate material may furthermore be applied to the build space when the coater is lifted. In the sense of the invention, “lifting” means that the coater moves upward over the build space at an inclined angle with respect to the horizontal. This prevents the particulate material from being able to fall over the build space. When lowered, the print head may then print the areas which need to be solidified to produce the molded part. In the sense of the invention, “lowering” means that the print head moves downward counter to the coating direction at an inclined angle with respect to the horizontal and parallel to the build space. This prevents an undesirable deposition of particulate material on the build space, whereby the particle layer would become uneven and the print head could collide with deposits of this type.


The device according to the invention furthermore comprises a coater cleaning unit (3), a coater filling unit (4), a central particulate material supply unit (6), a conveyor belt (7), an inspection unit (10), a print head cleaning unit with a spitting station (11), a capping station (12), a drop barrier (13), a collecting hopper (14), a conveyor line for excess particulate material (15), a collecting hopper in the unpacking area (16) and/or one or multiple channels (19).


In one preferred embodiment, the units of the coater peripheral units, preferably the coater cleaning unit (3), the coater filling unit (4) and the central particulate material supply unit (6) are disposed at the top in the coating direction, particularly preferably behind the build space.


The units of the print head periphery, preferably an inspection unit (10), a print head cleaning unit with a spitting station (11) and a capping station (12) are preferably disposed at the bottom in the coating direction, particularly preferably below the build space.


With the aid of the device according to the invention, a central particulate material conveyor may be disposed above the build space for automatically constructing the start feedstock.


Collecting hoppers may furthermore be disposed below the device (system) for collecting excess particulate material. One collecting hopper is preferably disposed at the front below the build space for collecting the excess or falling particulate material. Another collecting hopper is preferably disposed below the unpacking area.


The collecting hoppers preferably empty downward toward a conveyor line, which further conveys the particulate material and is also disposed on the bottom of the machine. The particulate material collected in this manner may then be reused. A “collecting line” in the sense of the invention is any suitable means for transporting the particulate material collected in this manner in one direction, preferably into a recycling container. For example, a screw conveyor may be used.


The conveyor line preferably has a central conveyor section, which is used to empty the collecting hoppers on the front side of the device and the collecting hopper in the unpacking area.


In another aspect, the invention relates to a method for producing three-dimensional models, a device according to the invention being used according to one of the aspects described above. In one method according to the invention, a start feedstock may be constructed with the aid of the device. A “start feedstock” is necessary to facilitate a startup of the manufacturing process and to provide a start surface made of particulate material, on which the coating with particulate material and subsequent printing with the print head may take place.


In one preferred embodiment of the invention, a coater applies thin layers of a particulate material. For this purpose, it travels along a linear drive system.


The coater preferably comprises a hopper which includes a gap-like opening in the vicinity of the coating plane. The ejection gap of the coater then preferably points in the coating direction. Upon excitation of the coater, particulate material emerges from this gap onto the coating plane. Roller coaters or blade coaters or combinations thereof are suitable as coaters. In all types, it is advantageous if the layer application takes place in the direction of the ascending coating plane and not the other way round, since this makes it possible to prevent the particulate material situated in front of the coater from sliding over the coating plane. With this orientation of the coater according to the invention, it is advantageously achieved that the coating is very even and remains stable. This also avoids undesirable and disadvantageous interactions from occurring between material provided for the coating and excess material.


The print head, which is preferably mounted on an orthogonal linear system, passes over the build space in a rastering process. In the rastering process, a distinction is made between the direction in which a strip the width of the print head is generated (print axis) and the direction in which the print head is offset by one strip width (print head positioning axis). The print head preferably travels downward in a meandering pattern.


A conventional binder, which is adapted to the particulate material, is preferably used. Particulate material/binder combinations are generally known and therefore do not need to be named explicitly.


The print head may also be preferably replaced by a radiation source or another suitable means for an energy-rich supply of radiation. In this case, the remaining components of the device are adapted accordingly.


In the present invention, the print head is preferably positioned in the coating direction and printing takes place orthogonally thereto. The present invention is furthermore preferably characterized in that the print axis and the coater move on a common axis pair. This means that the print head positioning axis is simultaneously the coater axis. However, in another preferred embodiment, it is also possible for the coater and the print head positioning axis to move on separate axis pairs.


In the build process of the present invention, one layer of particulate material is first applied from bottom to top. The print head then passes over the build space in the rastering process from top to bottom, counter to the coating direction, and applies extremely fine droplets of binder. Alternatively a print head the same width as the build space may be mounted, which prints the entire build space in one pass. The printing operation would then take place during the travel of the print head-coater unit to the lower edge of the build space.


In the proposed device, the coater passes over the build space another time during the rastering travel of the print head without applying a layer. The print head then moves in front of the coater during the printing operation. If particulate material undesirably falls down, it cannot disturb the printing operation. According to the invention, it is thus advantageously achieved that the molded parts to be produced are of very high quality in terms of precision. In another preferred embodiment, the ejection opening of the coater is oriented in the coating direction, and the print axis is preferably situated behind the coater. The print head is thus disposed counter to the coating direction, i.e., in relation to the inclined build space, the coater is disposed toward the top in relation to the print axis and the print head, the ejection opening and the print head being essentially oriented in opposite directions. In this device arrangement according to the invention, the peripheral units for the print head, i.e., for example the inspection unit (10), the print head cleaning unit (11), the capping station (12) and the drop barrier (13), are disposed in the lower area of the device plane. These components are thus disposed in a manner that is easily accessible to the operator and is user-friendly.


The coater cleaning unit (3) and the coater filling unit (4) are preferably disposed at the top of the device, preferably in front of the build space.


This arrangement also has the advantage that, after each cycle of coating and printing, the coater and print head function units may be moved to the peripheral units for the purpose of checking their flawless operation. This increases the quality of the molded parts to be produced in a time-saving manner. It is provided to be able to individually control how often the coater or the print head is moved to the peripheral units during the printing operation. This may take place after each coating or printing operation or at longer intervals, e.g., after each second or fourth operation.


The peripheral units of the coater comprise all functions for keeping the coater intact during and between the build processes.


The peripheral units of the print head are preferably: cleaning station, capping station, drop barrier, spitting station, drop scales and inspection unit.


In the cleaning station, the nozzle plate on the bottom of the print head is actively cleaned from the bottom during a special pass, e.g., using a rotating sponge roller.


The capping station closes the nozzle plate on the bottom of the print head with the aid of an extendable stamp and thus protects it against contamination and drying out between the build processes.


The drop barrier actively checks the nozzle plate on the bottom of the print head for deposits, such as drops or foreign bodies, using a light barrier, and causes the print head to be cleaned, if needed.


The spitting station collects drops and vapors from the print head when the latter clears itself for internal cleaning.


The drop scales supply the corresponding information for modularizing the drop size.


The inspection unit is a special access point in the system, which enables the bottom of the print head to be inspected and test printouts to be run on paper.


All the peripheral units which support the function of the print head are mounted on the lower front of the device according to the invention, which may also be referred to as the system, and are thus easily accessible to the operator. The fluid supply may be advantageously disposed, due to the arrangement of the print head periphery in this location.


Damages in the fluid system, or fluids which must be replaced during operation, are thus guided downward and cannot be distributed over the build space and the machine drives. This prevents fluids of this type from damaging the build space or contaminating the print head or the coater. The feed line for supplying fluid may thus also be kept short.


The coater periphery comprises the coater filling unit and the coater cleaning unit. The coater filling unit is advantageously disposed above the upper edge of the build space.


The coater carries along a certain stock of particulate material during the build process. From time to time, the stock must be replenished with particulate material from the coater filling unit. During the build process, the bottom of the coater or the coater ejection gap may become so dirty over time that the coater is no longer able to apply flawless coats. At the same time, the ejection gap may be contaminated.


The device thus preferably comprises a coater cleaning station. It cleans the bottom of the coater, including the ejection gap, using a brush which passes over the coater perpendicularly to the coating direction.


Particulate material falls off the coater both during the filling operation of the coater and during the cleaning thereof.


With the aid of the device according to the invention, falling particulate material is advantageously prevented from reaching the build space.


Due to the arrangement of the coater periphery above the build space according to the invention, leftover powder falls onto the finished feedstock and is thus safely transported away.


The coater filling unit is preferably supplied with particulate material centrally via an ejection point above and behind the build space.


It is possible to automatically construct the start feedstock needed for the build process through this ejection point. As an alternative to the automatic construction of the start feedstock according to the invention, it would otherwise be necessary to insert blocks, inclined plates, or to apply the particulate material by hand, so that the start layer and subsequent layers may be applied at the prescribed angle.


Due to the central arrangement of the ejection point, the transport paths of the particulate material are kept short and may pass outside the system without problems.


By keeping the conveyor line short, both the fresh particulate material and the conveyor system are protected.


During the build process, particulate material accumulates on the side of the build space and beneath the build space during coating, as a result of the process, and must be disposed of.


In one preferred embodiment, this particulate material is collected in channels on the side of the build space, which are situated at a steeper angle than the build plane, to the extent that particulate material contained therein slides downward due to gravity. A central container is preferably situated below the build space, into which the two side channels empty, so that the leftover particulate material may be collected there. This container is particularly preferably provided with an opening along the lower build space edge, so that leftover particulate material may also be collected there, which is transported over the build space and into the container, e.g., with the aid of the coater.


The central container is preferably transported out of the system with the aid of a conveyor line, e.g., a conveyor spiral or a conveyor screw on the bottom of the system.


This conveyor line may also transport leftover particulate material which accumulates behind the system during the unpacking operation. Conveyor lines are thus reduced and the cleanliness of the build process is guaranteed.


One particularly preferred aspect of the invention is the combination of the central particulate material supply, which continuously fills the coater. The start feedstock may also be advantageously constructed hereby, so that a manual construction of the start feedstock, which was previously necessary, is dispensed with. This is a great advantage, among other things, with respect to time savings and the manageability of the method.


Another advantageous aspect of the invention is the mounting of a disposal system, which makes it possible not only to collect fallen particulate material and return it to the production process but also to supply the leftover particulate material from the unpacking as a whole to the recycling function in the method. Collecting hoppers are preferably mounted on the front side of the device, below the device and below the unpacking area, which are provided with a common conveyor line, which supplies the material to be recycled to a recycling container. The particulate material recovered in this manner is preferably subjected to treatment steps which remove process-induced contaminants therefrom. It is then fed back into the 3D printing process. A structure of this type is illustrated, for example, in FIG. 3.


The invention also relates to a method for producing three-dimensional models (molded bodies).


One particular advantage of the method according to the invention is that, during startup, the start feedstock does not have to be constructed by hand, but instead an automatic startup is possible, due to the special design of the device. Previously, it was necessary to build up the start feedstock by hand, so that the 3D process using the construction in layers could begin. The device and method according to the invention were able to overcome this disadvantage and thus provide a faster and more straightforward method.


Preferred embodiments are illustrated in the figures:



FIG. 1 shows the functional principle of the continuous 3D printing process. The left side shows the front side of the machine, including the build space on which the components are produced in layers. The application of the individual layers takes place at an angle which is smaller than the specific angle of repose of the processed particulate material. Conveyor belt (7) moves feedstock (8) to the right to the back of the machine. Finished components may be removed here.



FIG. 2 shows the preferred structure of the invention. Axis system (9), which positions the print head, is disposed to the left and right of build space (18) on the front side of the machine. Coater filling unit (4) and coater cleaning unit (3) are situated at the top behind the build space. Excess particulate material from the cleaning or filling operation of the coater fall onto the feedstock without problems. The coater may be mounted on a coater axis (20) that travels on an inclined axis (9), preferably with the ejection opening of the coater oriented above the coater axis in an inclined direction. The print head may be mounted on a print head positioning axis (21) that travels on an inclined axis (9), preferably with the print head oriented below the print head positioning axis in an inclined direction.


Particulate material supply unit (6) is situated centrally behind the coater filling unit. The latter may either supply the coater filling unit (4) with particulate material or automatically produce the necessary start feedstock before the start of a job. The print head periphery is situated in an easily accessible location beneath the build space.



FIG. 3 shows the disposal paths of the excess particulate material. Channels (19), which collect excess particulate material from the build process and conduct it to the collecting hopper on front side (14), are situated to the left and right of build space (18). Conveyor line (15) runs along the bottom of the machine and empties collecting hopper (14). The conveyor line also empties collecting hoppers (16) from the unpacking area on the back of the machine.


LIST OF REFERENCE NUMERALS






    • 1. Coater


    • 2. Print head


    • 3. Coater cleaning unit


    • 4. Coater filling unit


    • 5. Finished component


    • 6. Central particulate material supply unit


    • 7. Conveyor belt


    • 8. Feedstock


    • 9. Axis system


    • 10. Inspection unit


    • 11. Print head cleaning unit with spitting station


    • 12. Capping station


    • 13. Drop barrier


    • 14. Collecting hopper, front side


    • 15. Conveyor line, waste


    • 16. Collecting hopper, unpacking area


    • 17. Roller path of unpacking area


    • 18. Build space


    • 19. Channels


    • 20 Coater axis


    • 21 Print head positioning axis




Claims
  • 1. A device for producing three-dimensional models, comprising: a coater having an ejection opening for layer-wise depositing a particulate material on a build surface having an incline; andat least one print head;wherein the print head is mounted on an inclined print axis,wherein the coater deposits the particulate material only while the coater moves in a coating direction up an incline in advance of the print head,the ejection opening of the coater being disposed toward the top in the coating direction, andthe print head prints on the deposited layer of the particulate material only after reaching a top region of the incline until reaching a bottom region of the incline, while moving in advance of the coater.
  • 2. The device according to claim 1, comprising a coater cleaning unit, a coater filling unit, a central particulate material supply unit, a conveyor belt, an inspection unit, a print head cleaning unit with a spitting station, a capping station, a drop barrier, a front collecting hopper, a conveyor line for waste, a collecting hopper in an unpacking area, or one or multiple channels.
  • 3. The device according to claim 1, wherein the device includes coater peripheral units including a coater cleaning unit, a coater filling unit, and a central particulate material supply unit, wherein the coater peripheral units are disposed toward the top in the coating direction.
  • 4. The device of claim 3, wherein the coater peripheral units are disposed behind a build space of the device.
  • 5. The device according to claim 1, wherein the device includes print head periphery units including an inspection unit, a print head cleaning unit with a spitting station, and a capping station, wherein the print head periphery units are disposed toward the bottom in the coating direction.
  • 6. The device of claim 5, wherein the print head periphery units are disposed below a build space of the device.
  • 7. The device according to claim 1, wherein the device includes a central particulate material conveyor disposed above a build space for automatically constructing a start feedstock.
  • 8. The device according to claim 1, wherein the coater applies layers of a particulate material on a build space and the device includes a front collecting hopper disposed toward a front of the build space and below the build space for collecting an excess of the particulate material.
  • 9. The device according to claim 1, wherein the coater applies layers of a particulate material on a build space and a conveyor line for excess particulate material is disposed on a bottom of the build space.
  • 10. The device according to claim 9, wherein the coater applies layers of a particulate material on a build space and the device includes a front collecting hopper disposed toward a front of the build space and below the build space for collecting an excess of the particulate material;the conveyor line has a central conveyor section, which is used to empty front collecting hoppers on the front side and a collecting hopper in the unpacking area.
  • 11. The device according to claim 1, comprising a coater cleaning unit, a coater filling unit, a central particulate material supply unit, a conveyor belt, an inspection unit, a print head cleaning unit with a spitting station, a capping station, a drop barrier, a front collecting hopper, a conveyor line for waste, a collecting hopper in an unpacking area, and one or multiple channels.
  • 12. The device according to claim 11, wherein the device includes coater peripheral units, including the coater cleaning unit, the coater filling unit, and the central particulate material supply unit, wherein the coater peripheral units are disposed toward the top in the coating direction.
  • 13. The device according to claim 12, wherein the device includes print head periphery units including, the inspection unit, the print head cleaning unit with the spitting station, and the capping station, wherein the print head periphery units are disposed toward the bottom in the coating direction.
  • 14. The device according to claim 13, wherein the central particulate material conveyor is disposed above a build space for automatically constructing a start feedstock.
  • 15. The device according to claim 14, wherein the coater applies layers of a particulate material on a build space and the device includes the front collecting hopper disposed toward a front of the build space and below the build space for collecting an excess of the particulate material.
  • 16. The device according to claim 15, wherein the coater applies layers of a particulate material on a build space and the device includes the conveyor line for excess particulate material disposed on a bottom of the build space.
  • 17. The device according to claim 16, wherein the conveyor line has a central conveyor section, which is used to empty the front collecting hopper and the collecting hopper in the unpacking area.
  • 18. The device of claim 17, wherein the peripheral coater units are disposed behind a build space of the device; and the print head periphery units are disposed below the build space of the device.
  • 19. The device of claim 1, wherein the print head travels downward in a meandering pattern where the print head prints a row while moving along a print axis and then moves along a print head positioning axis for printing a next row.
  • 20. The device of claim 1, wherein the print head has a width that is about the same as a width of the build surface and the print head prints on the deposited layer of the particulate material only while moving in a printing direction down the incline in advance of the coater.
  • 21. A device for producing three-dimensional models, comprising: a coater having an ejection opening for layer-wise depositing a particulate material on a build surface having an incline; andat least one print head;wherein the print head is mounted on a print head positioning axis that travels on an inclined print axis,wherein the coater is mounted on a coater axis orthogonal to the inclined print axis and deposits the particulate material only while the coater moves in a coating direction up the inclined print axis,the ejection opening of the coater being disposed toward the top in the coating direction, andthe print head prints on the deposited layer of the particulate material only after reaching a top of the incline until reaching a bottom of the incline;wherein the ejection opening and the print head have opposite orientations with the election opening oriented above the coater axis in an inclined direction and the print head oriented below the print head positioning axis in the inclined direction.
Priority Claims (1)
Number Date Country Kind
10 2012 022 859 Nov 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/DE2013/000685 11/21/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/079404 5/30/2014 WO A
US Referenced Citations (336)
Number Name Date Kind
143613 Bucklin Oct 1873 A
3913503 Becker Oct 1975 A
4247508 Housholder Jan 1981 A
4575330 Hull Mar 1986 A
4591402 Evans et al. May 1986 A
4600733 Ohashi et al. Jul 1986 A
4665492 Masters May 1987 A
4669634 Leroux Jun 1987 A
4711669 Paul et al. Dec 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4863538 Deckard Sep 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5047182 Sundback et al. Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5120476 Scholz Jun 1992 A
5126529 Weiss et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5216616 Masters Jun 1993 A
5229209 Gharapetian et al. Jul 1993 A
5248456 Evans, Jr. et al. Aug 1993 A
5252264 Forderhase et al. Oct 1993 A
5263130 Pomerantz et al. Nov 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5324617 Majima et al. Jun 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5398193 deAngelis Mar 1995 A
5418112 Mirle et al. May 1995 A
5427722 Fouts et al. Jun 1995 A
5431967 Manthiram et al. Jul 1995 A
5433261 Hinton Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5503785 Crump et al. Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5518060 Cleary et al. May 1996 A
5518680 Cima et al. May 1996 A
5555176 Menhennett et al. Sep 1996 A
5573721 Gillette Nov 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jul 1997 A
5658412 Retallick et al. Aug 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer et al. Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6316060 Elvidge et al. Nov 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood et al. Mar 2004 B1
6722872 Swanson et al. Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer et al. Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Russell et al. Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7531117 Ederer et al. May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer et al. Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer et al. Jun 2010 B2
7748971 Hochsmann et al. Jul 2010 B2
7767130 Elsner et al. Aug 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer et al. Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Leyden et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins et al. Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050074511 Oriakhi et al. Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050167872 Ederer et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060176346 Ederer et al. Aug 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20070045891 Martinoni et al. Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070238056 Baumann et al. Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner Sep 2008 A1
20080237933 Hochsmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100207288 Dini Aug 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100243123 Ederer et al. Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang Dec 2010 A1
20110049739 Uckelmann et al. Mar 2011 A1
20110059247 Kuzusako et al. Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann Apr 2012 A1
20120113439 Ederer May 2012 A1
20120126457 Abe et al. May 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20130000549 Hartmann et al. Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140048980 Crump et al. Feb 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Kim et al. Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Hartmann Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer et al. Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grassegger et al. Apr 2016 A1
20160263828 Ederer et al. Sep 2016 A1
20160303762 Gunther Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
20170106595 Gunther et al. Apr 2017 A1
20170136524 Ederer et al. May 2017 A1
Foreign Referenced Citations (62)
Number Date Country
720255 May 2000 AU
3221357 Dec 1983 DE
3930750 Mar 1991 DE
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4 325 573 Feb 1995 DE
29506204 Jun 1995 DE
4440397 Sep 1995 DE
19525307 Jan 1997 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19853834 May 2000 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
10 2006 040 305 Mar 2007 DE
102006029298 Dec 2007 DE
102007040755 Mar 2009 DE
102007047326 Apr 2009 DE
102009056696 Jun 2011 DE
102010015451 Oct 2011 DE
102011053205 Mar 2013 DE
102015006363 Dec 2016 DE
102015008860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
0361847 Apr 1990 EP
0431924 Jun 1991 EP
1415792 May 2004 EP
1457590 Sep 2004 EP
1381504 Aug 2007 EP
2297516 Aug 1996 GB
S62275734 Nov 1987 JP
2003136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
0140866 Jun 2001 WO
2001078969 Oct 2001 WO
2004014637 Feb 2004 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011063786 Jun 2011 WO
2011127897 Oct 2011 WO
2013075696 May 2013 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
2016146095 Sep 2016 WO
Non-Patent Literature Citations (16)
Entry
US 4,937,420, 06/1990, Deckard (withdrawn)
Translation of the International Search Report, Application No. PCT/DE2013/000685, dated Mar. 27, 2014.
International Preliminary Report on Patentability and Written Opinion of the International Search Authority, Application No. PCT/DE2013/000685, dated Mar. 27, 2014.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdricker/ dated Nov. 6, 2012.
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993.
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-133.
Gebhart, Rapid Prototyping, pp. 118-119, 1996.
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000.
EOS Operating Manual for Laser Sintering Machine, with Brief Summary, Feb. 22, 2005.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001.
Voxeljet's VXconcept- Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015.
Related Publications (1)
Number Date Country
20150290881 A1 Oct 2015 US