This nonprovisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No. DE 20 2004 008 621.2 filed in Germany on Jun. 1, 2004, which is herein incorporated by reference.
1. Field of the Invention
The invention is directed to the construction of a corrosion-resistant tension member in an area where it enters a structure, particularly an inclined cable at a pylon of a cable-stayed bridge.
2. Description of the Background Art
It is known with cable stayed bridges to load-transmittingly connect inclined cables with a pylon, with the inclined cables extending at an angle to one another and with which the roadway pillar is stayed against the pylon and which are primarily comprised of a bundle of individual elements, for example, steel wire strands. This for one can be accomplished with the stays coming from different directions all converging to the pylon there to be anchored, at times in a crisscross fashion; this requires a plurality of anchoring devices. Another option is to run the stays over the pylon in a saddle-like fashion, whereby the load-bearing forces extending at a right angle to the stay cable axis are transferred via the saddle to the pylon.
If such an inclined cable is damaged, for example, by the presence of corrosion on the steel tension members, it must be possible to replace such an inclined cable. In a conventional solution, a saddle-shaped canal is formed in the pylon for this purpose, into each of which one inclined cable can be inserted (DE 88 10 423 U). The lower area of the canal is comprised of a half tube forming a support trough with a saddle bearing at the vertex, where a saddle pipe sheathing the bundle of individual tension members in this area can be locked into place to avoid longitudinal offset. This is done with a bearing sleeve that is arranged in the vertex of the reversing point along the support trough, which is fitted with a bearing ring that is attached to the saddle pipe.
For stabilization purposes and to bond the individual tension members of the bundle with the saddle pipe, the remaining interstices are filled with a hardening material, for example, cement mortar. To improve the adhesion to the hardening material, the tension members, that is, for example, the steel wire strands, can preferably be roughened by sandblasting, at least in the area of the vertex.
In the conventional solution, the saddle pipe is directly connected with the sheathing of the bundle in the open area of the inclined cable outside the pylon by flange rings. As a result, the canal formed in the pylon, which must have a relatively large diameter, at least a greater height than the diameter of the bundle to make it possible to replace the bundle with the saddle pipe, is open on the front entry and/or exit point of the inclined cable. This opening is a disadvantage, because it is exposed to environmental influences and accessible to animals, particularly birds, which can cause dirt buildups and corrosion.
It is therefore an object of the present invention to provide a simple and economical method, which also foremost takes statical requirements into consideration, to close the openings in the guide canal for the inclined cable of a cable stayed bridge without compromising the conditions for the exchangeability of the inclined cable.
Essentially, the invention is based on the idea that with a tension member of the previously described kind, particularly with stay cable of a cable stayed bridge, the transition from the sheathing in the open area of the tension member to its connection to the structure, in the case of a cable stayed bridge to the pylon, is accomplished via a connecting pipe, which on the one hand can be tightly connected to the structure, for example, via a flange plate, and on the other hand can be connected to the sheathing in the open area such that a future replacement of the inclined cable is not impeded. By adding an elastic intermediate layer in the area of this connection, a tolerance adjustment can be achieved, and angle movements due to traffic loads, wind action, or the like and, to a certain degree, temperature-induced movements can be absorbed so that bending moments need not be considered in the construction. The result is a simple and economical solution for the connection of the sheathing of an inclined cable to the structure with advantages with regard to construction and installation and to a potentially required replacement of the inclined cable.
It is irrelevant for the application of the invention whether the tension member, particularly the inclined cable, is in the process of being inserted and anchored in the pylon, or whether it is rerouted thereupon via a stay saddle.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
In the pylon 2, a saddle-shaped canal 6 having an oval cross section, an open front side, and a radius R, into which the inclined cable 1 can be inserted from the outside in, is formed by a recess pipe 5. In the area of its passage through the pylon 2, the bundle 3 itself, is also guided in a steel saddle pipe 7 in the shape of a circular arc, inside of which the individual tension members of the bundle 3 are bonded with the saddle pipe 7 by grouting mortar 8.
In the vertex area 9 of the rerouting point, a recessed saddle bearing 10 with a recess 11 is located, with which a cleat 12 that is firmly attached to the saddle pipe 7 by welding, for example, engages. This type of anchoring, while allowing complete exchangeability of the stay cable 1, reliably ensures the prevention of longitudinal movements during the installation of the inclined cable and at the same time allows the absorption of differential forces that occur in the longitudinal direction of the inclined cable 1. During the replacement process, this construction allows for the entire inclined cable 1 to be lifted with the saddle pipe 7 until the cleat 12 disengages from the recess 11; the oval shape of the recess pipe 5 (
The construction of the connection of the sheathing 4 of the inclined cable 1 to the structure, namely to the pylon 2, according to the present invention, in a way that the canal 6, which is formed by the recess pipe 5, is closed on the front side, is illustrated in FIGS. 2 to 5.
As is shown in
As can be particularly seen in
This flange plate 16 can have a rectangular shape since the oval opening of the recess pipe 5 has to be covered (
In order to achieve a constant soft redirecting of the bundle 3 in this area, particularly with lateral angle deviations, which can be easily determined on site, a cushioning element 22 that is made of an elastic and/or ductile material can be arranged at the at the inner wall of the end 21 of the saddle pipe 7. In its most simple form, this cushioning element 22 can be a piece of pipe; however, it can also be a molded part having an inner contour with rounded edges that is adapted to the behavior of the bundle 3, as illustrated in
In order to be able to fill the complete area of the saddle pipe 7 with grouting mortar 8, a formwork pipe (not shown) can be temporarily put over the end 21 of the saddle pipe 7, which is sealed off against the saddle pipe 7 by a seal. After the front opening of the formwork pipe is sealed off, the entire cavity can be grouted. The formwork pipe with the lid to seal the front opening could be removed again after the grouting mortar 8 had hardened.
The detachable connection between the connecting pipe 14 and the sheathing 4, in this embodiment the transition pipe 15, is illustrated in
Whereas in the illustrated embodiment in
The inner flange 23, which is illustrated in
It is obvious that the above-described embodiment of the sheathing connection of an inclined cable to the structure can be applied not only when the stay cable is rerouted in the structure, namely the pylon, as is illustrated, but as a matter of course also when the inclined cable is guided straight into the structure to be anchored there in a conventional way. When the inclined cable is guided straight into the structure, in other words, when it is in a concentric position in the recess pipe, the flange plate 16 abutting to the structure can also be a flange ring.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
DE 20 2004 008 62 | Jun 2004 | DE | national |