This disclosure relates generally to a synthetic Lactobacillus casei bacterium engineered to produce increased amounts of ethanol, as compared to wild type Lactobacillus casei, as well as to methods of making and using such a bacterium.
Microbial production of biofuels from lignocellulosic substrates is a component of the United States plan to reduce its dependency on fossil fuels. The microorganisms typically considered for the production of biofuels include Saccharomyces cerevisiae, Zymomonas mobilis, Escherichia coli, and Clostridium sp. However, all of these microorganisms suffer from one or more of the following deficiencies: relatively low tolerance to the environmental stresses likely to be encountered in fermentation (e.g., high levels of alcohols, acids, and/or osmolarity), complex physiology, poor availability of genetic tools, and limited ability to secrete enzymes. Accordingly, there is a need in the art for improved microorganisms for the production of biofuels such as ethanol from lignocellulosic substrates.
In a first aspect, this disclosure encompasses an engineered bacterium for producing ethanol from one or more carbohydrates. The engineered bacterium is made by (a) inactivating within a Lactobacillus casei bacterium one or more endogenous genes encoding a lactate dehydrogenase; or (b) introducing into a Lactobacillus casei bacterium one or more exogenous genes encoding a pyruvate decarboxylase and one or more exogenous genes encoding an alcohol dehydrogenase II. The engineered bacterium can also be made using a combination of both approaches. The resulting engineered bacterium produces significantly more ethanol than the wild type Lactobacillus casei bacterium.
In certain embodiments, the Lactobacillus casei bacterium is made from L. casei strain 12A.
In certain embodiments, the step of inactivating within a Lactobacillus casei bacterium one or more endogenous genes encoding a lactate dehydrogenase also includes inactivating within the Lactobacillus casei bacterium an endogenous gene encoding D-hydroxyisocaproate dehydrogenase. In certain embodiments, the engineered bacterium includes the gene deletion mutation Δ L-lactate dehydrogenase 1 (ΔL-ldh1), the gene deletion mutation Δ L-lactate dehydrogenase 2 (ΔL-ldh2), or both. In some such embodiments, the engineered bacterium further includes the gene deletion mutation Δ D-lactate dehydrogenase (ΔD-ldh) or Δ D-hydroxyisocaproate dehydrogenase (ΔD-hic).
In certain embodiments, the exogenous gene encoding a pyruvate decarboxylase includes the gene of Zymomonas mobilis that encodes for pyruvate decarboxylase (Pdc), and the exogenous gene encoding an alcohol dehydrogenase II includes the gene of Zymomonas mobilis that encodes for dehydrogenase II (AdhII). Preferably, the exogenous genes are modified to utilize L. casei codon usage for highly expressed genes.
In certain embodiments, the exogenous genes are introduced into the L. casei bacterium using an expression vector. A non-limiting example of an expression vector that could be used is pPpgm-PET.
In certain embodiments, the exogenous genes are operably linked to a promoter. Preferably, the promoter is an L. casei promoter. An non-limiting example of a preferred L. casei promoter is the phosphoglycerate mutase (pgm) promoter (Ppgm). The L. casei promoter may also be a promoter that is highly expressed in the stationary phase. Non-limiting examples of such promoters include the L. casei GroEL promoter and the the L. casei DnaK promoter.
In a second aspect, the disclosure encompasses an engineered bacterium for producing ethanol from one or more carbohydrates. The engineered bacterium is a derivative of L. casei 12A containing the deletion mutation ΔL-ldh1, an exogenous gene encoding a pyruvate decarboxylase, and an exogenous gene encoding an alcohol dehydrogenase II. The exogenous genes are operably linked to a native L. casei promoter, and the engineered bacterium produces significantly more ethanol than the wild-type L. casei bacterium.
In certain embodiments, the engineered bacterium further includes the deletion mutation ΔL-ldh2.
Non-limiting examples of native L. casei promoters that could be operably linked to the exogenous genes include the phosphoglycerate mutase promoter, the GroEL promoter, and the DnaK promoter.
In certain embodiments, the exogenous genes are from Zymomonas mobilis.
In certain embodiments, the exogenous genes are included in a pPpgm-PET expression vector. In some such embodiments, the pgm promoter (Ppgm) in the pPpgm-PET expression vector may be substituted with a promoter that is highly expressed in the stationary phase. Non-limiting examples of such a promoter include a GroEL promoter or a DnaK promoter.
In a third aspect, this disclosure encompasses a method of making ethanol. The method includes the step of culturing the engineered bacterium of any of the embodiments described above on a substrate comprising a carbohydrate, and collecting the ethanol produced by the bacterium.
Before the present materials and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by any later-filed nonprovisional applications.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. As well, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. The terms “comprising”, “including”, and “having” can be used interchangeably.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications and patents specifically mentioned herein are incorporated by reference for all purposes including describing and disclosing the chemicals, instruments, statistical analysis and methodologies which are reported in the which might be used in connection with the invention. All references cited in this specification are to be taken as indicative of the level of skill in the art. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
We have developed a bioengineered biofuel-producing strain of Lactobacillus casei. The following characteristics make L. casei an ideal biofuels fermentation organism: ability to use lignocellulosic-derived mono- and di-saccharides; resistance to environmental stresses likely to be encountered in industrial biofuels fermentations, including high levels of biofuels, acids, and/or osmolarity; relatively simple fermentative metabolism with almost complete separation of cellular processes for biosynthesis and energy metabolism; possibility to direct metabolic flux of both pentoses and hexoses to pyruvate (allowing for construction of derivatives producing second generation biofuels (i.e. isobutanol)); the availability of established platforms for introducing and expressing foreign DNA; availability of a deep portfolio of molecular-genetic data related to L. casei ecological adaptation, genomics, transcriptomics, lipidomics, and metabolomics; the ability to secrete and display proteins, hence potential for use in consolidated bioprocessing; and designation as a GRAS (Generally Regarded As Safe) species.
L. casei 12A, a strain isolated from corn silage on the University of Wisconsin-Madison campus, was selected as the biofuels-producing parental strain, due to its alcohol resistance, carbohydrate utilization profile, and amenability to genetic manipulation.
A two pronged approach has been employed to redirect metabolic flux in L. casei 12A to ethanol. The first approach was to inactivate genes that encode enzymes which compete with the 12A pathway to ethanol. The second approach utilized the introduction of the genes from Zymomonas mobilis that encode pyruvate decarboxylase (Pdc) and alcohol dehydrogenase II (Adh2) activities (PET cassette). These genes were designed utilizing the L. casei codon usage for highly expressed genes with a constitutive L. casei promoter (phosphoglycerate mutase), synthesized, ligated with digested pTRKH2 to form pPPGM-PET), and introduced into 12A derivatives by electroporation. two pronged approach has resulted in an L. casei 12A derivative that produces ethanol as more than 80% of its metabolic end products.
The constructed derivative of L. casei 12A produces ethanol as more than 80% of its final metabolic end products from glucose, and the path to greater than 90% conversion is clear. This is by far the greatest conversion that has been reported with a lactobacilli, and will allow us to exploit the advantages of the use of lactobacilli as biocatalysts for the production of biofuels. These advantages are further delineated below.
The specific features and advantages of the present invention will become apparent after a review of the following experimental examples. However, the invention is not limited to the specific embodiments disclosed herein.
This example addresses (1) what level of carbohydrate Lactobacillus casei 12A derivatives are capable of using; and (2) what level of ethanol production takes place at elevated glucose concentrations.
In the first experiment, 48 small volume (2 ml) fermentations were conducted in GC vials containing our L. casei chemically defined media to examine glucose utilization and end product formation. In parallel, these fermentations were conducted in a 96 well plate reader to monitor growth. The experimental matrix was: 3 levels of glucose (2.5, 5.0, and 10% w/v), with and without the osmoprotectants present in ACSH (0.7 mM betaine, 0.7 mM choline chloride, and 0.2 mMDL-carnitine), with and without 2.5 μg/ml erythromycin (Ery) to select for the plasmid encoded PET cassette, and four different strains. The strains utilized were: (1) an L. casei 12A derivative (12AΔL-ldh1) lacking L-lactate dehydrogenase 1 (L-ldh1), the primary fermentative lactate dehydrogenase, with pTRKH2 (empty vector control); (2) 12AΔL-ldh1 containing pPPGMPET, pTRKH2 with an insert containing the L. casei codon optimized Zymomonas mobilis genes encoding pyruvate decarboxylase (Pdc) and alcohol dehydrogenase II (Adh2) activities under the control of the L. casei phosphoglycerate mutase (pgm) promoter; (3) an L. casei 12 A derivative (12AΔL-ldh1ΔL-ldh2ΔD-hic) lacking, L-ldh1, L-ldh2, and D-hydroxyisocaproate dehydrogenase (D-Hic) containing pTRKH2; and (4) 12AΔL-ldh1ΔL-ldh2ΔD-hic containing pPPGM-PET. These fermentations were conducted at 37° C. for 96 h and the media had an initial pH of 6.0.
Three of the strains (12AΔL-ldh1(pTRKH2), 12AΔL-ldh(pPPGM-PET) and 12AΔL-ldh1Δldh2ΔD-hic (pPPGM-PET) reached an OD600 of greater than 1.0 within 24 h and grew at indistinguishable rates regardless of the glucose concentration, the presence or absence of either osmoprotectants, or Ery. The other strain, 12AΔL-ldh1ΔL-ldh2ΔD-hic (pTRKH2) grew poorly, never reaching an OD600 of greater than 0.05, even after 96h, regardless of media composition; this corresponds with previous experiments and was expected, as this strain lacks an efficient mechanism to regenerate NAD+ from pyruvate.
The addition of osmoprotectants did not have a significant effect on growth of any of the strains under the conditions examined; however, the presence of the osmoprotectants did result in a reduction in lysis of strains producing ethanol in the presence of 2.5% glucose. No lysis was observed by the ethanol producing strains at the higher glucose concentrations, suggesting that the higher osmolarities induced genes that provide enhanced ethanol tolerance. The most significant finding from the growth experiments is that growth of L. casei 12A derivatives is not affected by the glucose (osmolarity) concentrations up to 10%, rather these conditions seem to enhance cell viability in stationary phase of 12A derivatives producing ethanol.
Metabolic end product accumulation in the small volume fermentations were determined by GLBRC Enabling Technologies (HPLC-RID), and the results for L. casei 12AΔL-ldh(pPPGM-PET) and 12AΔL-ldh1ΔL-ldh2ΔD-hic(pPPGM-PET) are presented in Table 1. All of the glucose was consumed in fermentations containing 2.5% (139 mM) and 5.0% (278 mM) glucose. In fermentations containing 10% (566 mM) glucose, glucose utilization ranged from 8.1 to 9.5% (459.1 to 536.4 mM). The ethanol formed in the 2.5% (139 mM) glucose fermentations ranged from 1.3 to 1.4% (219.6 to 247.6 mM), with % theoretical yields ranging from 79 to 89%. The ethanol formed in the 5.0% (278 mM) glucose fermentations ranged from 2.6 to 2.7% (438.0 to 466.0 mM), with % theoretical yields ranging from 79 to 84%. The ethanol formed in the 10% (566 mM) glucose fermentations ranged from 3.3 to 3.8% (563 to 651.5 mM), with % theoretical ranging from 50 to 58%. In fermentations containing 10% (556 mM) glucose, significant accumulation of pyruvate (73.2 to 92.4 mM) was observed, suggesting that pyruvate decarboxylase activity has become limiting. Under all the conditions examined, L. casei 12AΔLldh1ΔL-ldh2ΔD-hic (pPPGM-PET) produced slightly more ethanol and slightly less lactate than L. casei 12AΔldh (pPPGM-PET). Possible reasons for incomplete glucose utilization in fermentations containing 10% glucose include changes in the pH of the media and increases in pressure due to conducting the fermentations in closed vials. To overcome these issues, fermentations that allow for pH control and CO2 release have been conducted.
Fermentations with 10% glucose with osmoprotectants and Ery have been conducted in our larger scale (500 ml) fermentation equipment that allows for pH control and CO2 release with L. casei 12AΔL-ldh (pPPGM-PET) and 12AΔL-ldh1 ΔL-ldh2ΔD-hic (pPPGM-PET) at 37° C., with pH maintained at 6.0. The growth and glucose utilization (enzymatic determination) results are presented in
The 19 12A derivatives that were constructed via our two-step gene replacement method are presented in Table 2, clearly demonstrating the successful construction of a variety of 12A mutants.
Lactobacillus casei 12A derivatives constructed in the
This example shows the analysis of the data we obtained from the fermentations with 10% glucose with osmoprotectants and Ery that were conducted in our larger scale (500 ml) fermentation equipment with Lactobacillus casei 12AΔL-ldh (pPPGM-PET) and 12AΔL-ldh1ΔLldh2ΔD-hic (pPPGM-PET) at 37° C., with pH maintained at 6.0. We could only accommodate three fermentation vessels at a time. Therefore, only the 12AΔL-ldh (pPPGM-PET) fermentation was conducted in duplicate.
The growth, glucose utilization, and ethanol production shown by these strains are presented in
The metabolic end products formed and glucose utilized as a function of time for these fermentations is presented in Tables 3 and 4. 12AΔL-ldh1 (pPPGM-PET) will be the focus of this discussion, due to its higher productivity. This 12A derivative utilized 504.5 mM glucose (9.1%) glucose in 96 h and produced 934.7 mM of “pyruvate-derived” metabolic end products, which is 87.4% of the theoretical yield from glucose. Ethanol was produced at a level of 771.3 mM (4.5%), which was 82.5% of the metabolic end-products.
The second most abundant metabolic end product was pyruvate, which was present at 110.1 mM after 96 h. Pyruvate accumulation began at approximately 21 h, at the same time, ethanol as a percentage of the total metabolic end products began to decrease (% ethanol in total), suggesting that pyruvate decarboxylase activity becomes limiting at that time. This corresponds to the entry of this organism into stationary phase, suggesting that the L. casei phosphoglycerate mutase (pgin) promoter used to drive expression of the PET cassette is poorly expressed in stationary phase. It is highly likely that pyruvate accumulation can be overcome by utilizing a L. casei promoter highly expressed in stationary phase. If the pyruvate, which had accumulated after 96 h in the 12AΔL-ldh1 (pPPGM-PET) fermentation, had been converted to ethanol, a total of 881.4 mM (5.14%) ethanol would have been produced. Additionally, the rate of glucose utilization would have been even higher, as pyruvate accumulation is known to inhibit glycolysis.
It is difficult to directly compare our results to what is known concerning other biocatalysts, due to differences in media and fermentation equipment utilized. However, the results obtained in these L. casei 12AΔL-ldh1 (pPPGM-PET) fermentations are most similar to the Escherichia coli GLBRCE1 synthetic hydrolysate fermentations reported by Schwalbach et al. (2012, AEM 78:3442) in E. coli. GLBRCE1 converted 338 mM glucose into 477 mM ethanol, an ethanol yield of 70.5% of the theoretical maximum. L. casei 12AΔL-ldh1 (pPPGM-PET) converted 504.5 mM glucose into 771.3 mM ethanol, an ethanol yield of 76.4% of the theoretical maximum.
Abbreviations in Tables: Rem, Remaining; Con, consumed; EtOH, ethanol; Pyr, pyruvate; Lac, lactate; Ace, acetate. % yield=(mM Total product/(2×mM initial Glucose))×100% Ethanol=(mmol/L ethanol×46.068 g/mol)/(1000 mg/g)×(1000 ml/L/100 ml)×(0.789 g/ml).
Screening strains of L. casei for biofuels relevant phenotypes and genes. Our laboratory has a culture collection contains approximately 60 strains of L. casei isolated from green plant material (i.e. corn silage), cheese, wine, and humans. The eleven strains with genome sequences were screened for the ability to utilize 60 different carbohydrates, including numerous carbohydrates present in lignocellulosic feed stocks. Individual strains were able to grow on between 17 and 26 different substrates. The strains isolated from corn silage (12A and 32G) grew on the greatest number of substrates. Nine gene clusters potentially involved in cellobiose utilization and one gene cluster involved in xylose utilization were identified.
The eleven strains with genomic information were also screened for alcohol tolerance (ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol), growth in AFEX-pretreated corn stover hydrolysate (ACSH), and transformation (electroporation) efficiency. L. casei 12A exhibited the greatest tolerance to the biofuels examined. For example, when grown in the presence of 10% ethanol, it reached a final cell density 40% of that it attained in the absence of ethanol. Of the 11 strains examined for growth in corn stover hydrolysate, 3 of these strains (ATCC 334, 21-1, and 12A) grew significantly better, reaching a final optical density at 600 nm of approximately 2.0 within 28 h. Five L. casei strains were examined for transformation efficiency with pTRKH2 (O'Sullivan and Klaenhammer 1993). L. casei 12A exhibited a frequency (approximately 5×105 transformants per ug of pTRKH2) at least 50-fold higher than that observed with any of the other strains examined. Based upon the results from these analyses, L. casei 12A was selected as the biofuel producing parental strain.
Completing the L. casei 12A genome. For further information regarding the L. casei 12A genome, see Broadbent, et al., BMC Genomics 2012, 13:533, which is incorporated by reference herein. To enhance the depth of genomic sequence coverage of 12A, genomic DNA was prepared and submitted to the Joint Genome Institute (JGI) for genome sequencing. A draft genome of L. casei 12A with approximately 500× coverage assembled into 397 scaffolds was received from JGI. This genome assembly was subsequently merged with the previous 23× 454-generated paired end genome assembly in collaboration with personnel from DuPont Inc. (Madison, Wis.), yielding a genome assembly with 19 ordered contigs. We have generated PCR amplicons across all 19 gaps, and have sequenced 10 of these amplicons.
L. casei metabolic models. We have developed a genome-scale metabolic model for L. casei ATCC334 (the neotype strain) and 12A using the ModelSEED database and the genome annotation from RAST. We have modified the draft L. casei 12A model from ModelSEED using the following processes: 1) thermodynamically infeasible cycles were removed, 2) elementally imbalanced metabolic reactions were corrected; and 3) model predictions for amino acid requirements were compared against experimental growth phenotypes determined in a lactobacilli chemically defined medium (CDM) described by Christensen and Steele (J. Bacteriol. 185 (2003): 3297-3306). Inconsistencies were corrected by the addition or deletion of some reactions.
Redirecting metabolic flux in L. casei 12A to ethanol. The development of a method to inactivate genes in L. casei was a requirement for the construction of a L. casei strain capable of converting lignocellulosic biomass to ethanol. An efficient gene replacement method based on the introduction of pCJK47-based constructs (Kristich et al. 2007) via a 12A optimized electroporation protocol was developed.
A two pronged approach was employed to redirect metabolic flux in L. casei 12A to ethanol. The first approach is to inactivate genes that encode enzymes which compete with the 12A pathway to ethanol, which has acetyl-CoA as an intermediate. There are a large number of genes that encode enzymes potentially involved in anaerobic pyruvate metabolism in L. casei. We have inactivated 9 of these genes: pyruvate-formate lyase (Pfl), the four L-lactate dehydrogenases (L-ldh1, Lldh2, L-ldh3, and L-ldh4), D-lactate dehydrogenase (D-ldh), D-hydroxyisocaproate dehydrogenase (DHic), acetolactate synthase (Als), and oxaloacetate decarboxylase (OadA). Additionally, 5 derivatives lacking two or three of the dehydrogenases have been constructed. Characterization of the end product distribution these mutants is presented in Table 5. The highest level of metabolic redirection to ethanol achieved to date using this approach, is 21%, achieved with the 12A ΔL-ldh1ΔL-ldh2ΔD-hic derivative. It is interesting to note that this derivative also accumulates pyruvate.
The second approach utilized to direct metabolic flux in 12A towards ethanol was the introduction of the genes from Zymomonas mobilis that encode pyruvate decarboxylase (Pdc) and alcohol dehydrogenase II (Adh2) activities (PET cassette). These genes were designed utilizing the L. casei codon usage for highly expressed genes with a constitutive L. casei promoter (phosphoglycerate mutase), synthesized by GeneArt, ligated with digested pTRKH2 (pPGM-PET), and introduced into 12A derivatives by electroporation. Characterization of the end product distribution of two of these derivatives has been completed and is presented in Table 5. The highest level of metabolic redirection to ethanol achieved to date using this approach is 85.3%, achieved with the 12A ΔL-ldh1ΔL-ldh2 (pPpgm-PET) derivative. It is interesting to note that 12A derivatives with pPpgm-PET grow more rapidly than their corresponding strains, suggesting that ethanol is less inhibitory to 12A derivatives than lactate.
These results suggest that the two pronged approach is effective for redirecting 12A metabolic flux to ethanol.
Ts
aReported by the initial concentration of glucose or citrate subtracted by the final concentration of the respective compound at 48 hrs. bIn parenthesis, metabolic end product distribution by % of total. cCalculated by percentage of total metabolic end products produced/2x (glucose+citrate) in mmoles. dExpressed as molar ratio, where lactate is the summation of both the L- and D-forms. Abbreviations: BQL = below quantifiable level; NA = not applicable; Glu = glucose; Cit = citrate; Lac = lactate; ETOH =, Ace = acetate; Pyr = pyruvate
Lactobacillus casei 12A was selected as the biofuels parental strain based upon its alcohol tolerance (grows in the presence of >10% ethanol), carbohydrate utilization, and relatively high transformation efficiency. This organism metabolizes hexoses through the Embden-Meyerhof-Parnas pathway and converts pyruvate to lactate via a variety of different enzymes; including four L-lactate dehydrogenases (Ldh), one D-Ldh, and one D-hydroxyisocaproate dehydrogenase.
Essential characteristics of organisms to be utilized for microbial production of ethanol from plant biomass include the ability to secrete enzymes, transport glucose and xylose, metabolize glucose and xylose to ethanol, as well as have sufficient ethanol tolerance to make the fermentation economically viable. It is unlikely an organism capable of meeting all of these criteria will be isolated from nature. Therefore, rational strategies to engineer strains for the industrial production of ethanol from plant biomass are preferred. The following characteristics make L. casei 12A an ideal Gram-positive species for research in this area:
We pursued two strategies concurrently to redirect L. casei 12A fermentation to ethanol. The first strategy involved inactivation of enzymes that consume pyruvate under anaerobic conditions without producing ethanol, including the D-Ldh; four L-Ldhs; D-(D-Hic); acetolactate synthase (Als); and oxaloacetate decarboxylase (Oad). This approach has been used to inactivate L-ldh1, L-ldh2, and D-hic, as well as to construct the L-ldh1/L-ldh2, double mutant. The highest level of ethanol formation was observed with the ΔL-ldh1/ΔL-ldh2 double mutant, which produces ethanol as 14% of its metabolic end products.
Our second strategy for increasing flux to ethanol involved expressing ethanol producing enzymes. A codon optimized “PET” cassette comprised of the Zymomonas mobilis genes encoding pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh2) was constructed, and placed under the control of the L. casei 12A pgm promoter, pgm ribosomal binding site and kdgR transcriptional terminator. When this construct was introduced into L. casei 12A, ethanol made up 61% of metabolic end products formed. When introduced into L. casei 12A (ΔL-ldh1), ethanol was the dominant product observed (91% of metabolic end productions). Results from this analysis indicate that the two approaches are complementary and demonstrate that redirecting metabolic flux in L. casei from lactate to an alcohol can be readily achieved.
The general strategy that was used to redirect metabolic flux in L. casei 12A from lactic acid to ethanol is illustrated in detail in
L. casei 12A mutants were grown in MRS from glycerol stock for 24 hrs at 37° C. then transferred to MRS and incubated for an additional 18 hrs. CDM containing 50 mM glucose was inoculated and incubated in GC vials for 48 hrs at 37° C. At the 48-hr time point, supernanant was drawn off and submitted to GLBRC enabling technologies for fermentation by-product analysis via HPLC-RID.
Conclusions. Inactivation of L-Ldh1 reduced flux towards L-lactate and enhanced flux towards D-lactate and ethanol. Inactivation of L-Ldh2 increased these changes in metabolic flux.
In L. casei 12A with the PET cassette, ethanol made up 61% of metabolic end products formed, while 91% of metabolic end productions were directed to ethanol when the PET cassette was introduced into L. casei 12A ΔL-ldh1.
The two pronged strategy, inactivating genes encoding enzymes that produce lactic acid and introducing the PET cassette, effectively converted L. casei 12A from producing lactate as its main metabolic product to producing ethanol as its main metabolic end product.
Cai, H., Thompson, R. L., Broadbent, J. R., and Steele, J. L. (2009). Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into their Niche- associated Evolution. Genome Biol. and Evol. 1:239-257.
Duong, T., Miller, M. J., Barrangou, R., Azcarate-Peril, M. A., and Klaenhammer, T. R. (2010). Construction of vectors for inducible and constitutive gene expression in Lactobacillus. Microbiol Biotech, 4(3): 357-367.
Kristich, C. J., Chandler, J. R., and Dunny, G. M. (2007). Development of a host-genotype- independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid 57:131-144.
In the previous examples, a first generation Lactobacillus casei ethanologen was created by a two pronged approach to redirect metabolic flux in L. casei 12A from lactate to ethanol. The first prong was to inactivate genes encoding lactate dehydrogenases, enzymes which compete with the 12A pathway to ethanol. The second prong was the introduction of the genes from Zymomonas mobilis that encode pyruvate decarboxylase (Pdc) and alcohol dehydrogenase II (Adh2) activities (PET cassette). These genes were designed utilizing the L. casei codon usage for highly expressed genes and placed under the control of L. casei phosphoglycerate mutase promoter, thought to be a constitutively expressed promoter.
This approach was highly successful, resulting in a strain that utilized 504.5 mM glucose (9.1%) glucose in 96 h and produced 934.7 mM of “pyruvate-derived” metabolic end products, which is 92.6% of the theoretical yield from 504.5 mM glucose in a 500 ml fermentation vessel under anaerobic conditions at 37° C. in a defined media with 540 mM glucose. Ethanol was produced at a level of 771.3 mM (4.5%), which was 82.5% of the metabolic end-products. The second most abundant metabolic end product was pyruvate which was present at 110.1 mM after 96 h.
Pyruvate accumulation began at approximately 21 h. At the same time, ethanol as a percentage of the total metabolic end products began to decrease (% ethanol in total), suggesting that pyruvate decarboxylase activity becomes limiting at that time. This corresponds to the entry of this organism into stationary phase, suggesting that the L. casei phosphoglycerate mutase (pgm) promoter used to drive expression of the PET cassette is poorly expressed in stationary phase. It is highly likely that pyruvate accumulation can be overcome by utilizing a L. casei promoter highly expressed in stationary phase.
Accordingly, this prophetic example discloses the next generation L. casei ethanologen, having the PET cassette placed under the control of a promoter that is highly expressed in stationary phase. For example, either the GroEL or DnaK promoters, as they have been demonstrated to be highly expressed in a related organism, L. plantarum, when this organism was exposed to ethanol (Gyu et al. 2012). The anticipated result from such a construct would be that the 110.1 mM pyruvate that was observed to accumulate in the previous fermentation (see above) would be converted to ethanol. This would then yield 881.4 (110.1+771.3) mM of ethanol, or 87.4% of the theoretical yield from 504.5 mM glucose.
Lee, S. G., K. W. Lee, T. H. Park, J. Y. Park, N. S. Han, and J. H. Kim. 2012. Proteomic analysis of proteins increased or reduced by ethanol of Lactobacillus plantarum ST4 isolated from makgeolli, traditional Korean rice wine. J. Microbiol. Biotechnol. 22:516-525.
This application is a continuation of U.S. application Ser. No. 16/394,114 filed Apr. 25, 2019, which is a continuation of U.S. application Ser. No. 13/964,548 filed on Aug. 12, 2013, which claims the benefit of U.S. provisional Application No. 61/682,281 filed on Aug. 12, 2012. Each of these applications is incorporated by reference herein in its entirety.
This invention was made with government support under DE-FC02-07ER64494 awarded by the US Department of Energy and 2011-67009-30043 awarded by the USDA/NIFA. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61682281 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16394114 | Apr 2019 | US |
Child | 17228170 | US | |
Parent | 13964548 | Aug 2013 | US |
Child | 16394114 | US |