This invention concerns improvements in and relating to construction of conservatory roofs.
Conservatory roofs are generally constructed by mounting glazing panels between roof beams supported at one end from a ridge beam and at the other end from an eaves beam. The roof beams are fixed at each end by means of screws/bolts through the roof beams into the ridge or eaves beam. The positioning of the roof beams has to be marked out to ensure that the roof beams are positioned accurately. If the roof beam positioning is incorrect, the aesthetic appearance of the roof may be impaired and a proper seal with the glazing panels may not be achieved. An object of this invention is to provide an improved way of securing roof beams in constructing a conservatory roof.
According to the invention it is proposed that roof beams be provided at least at one end a connector that can engage a cooperating formation of an eaves and/or ridge beam or a component of a roof system associated with either the ridge or eaves beam, preferably in a snap-fit manner. Preferably also the connectors will lock in place.
The invention further provides a conservatory roof comprising a ridge beam, an eaves beam and roof beams engaged with either or both of the ridge and eaves beams by means of connectors engage cooperating formations of the ridge and/or leaves beams, preferably in a snap-fit manner. Preferably also the connectors will lock in place.
A roof beam connector of the invention is preferably arranged to engage with a ridge or eaves beam or a component associated therewith in sliding fashion. Preferably the connector will have an end face that can rest against a corresponding face of the ridge or eaves beam or component associated therewith.
In a preferred embodiment of the invention a roof beam connector has a first connector part for hooking over part of a ridge or eaves beam or an associated component thereof. The connector preferably has a second connector part for engaging in a groove or slot of a ridge or eaves beam or an associated component thereof. The second connector part of the roof beam connector preferably comprises a lug on a resilient finger of the connector. The connector preferably has a third connector part comprising a foot for a groove or slot of a ridge or eaves beam or a component associated therewith.
Preferably the connector of the invention has means for attachment thereof to a roof beam end. The connector preferably has a stem that is shaped to receive a roof beam end or a stem that is shaped to fit into a roof beam end. Preferably the connector is adapted for use with roof beams of the type described in our co-pending application (P5139)
Such roof beams comprise a core profile of metal, a plastics member Fitted to the core profile and providing at least one ledge for carrying an edge of a sheet of glazing material and a cap mountable on the plastics member for retaining the glazing sheet thereon.
In a first preferred embodiment the core profile is a hollow extrusion and the plastics member is a sheath for the core profile. In another preferred embodiment, the plastics member is mountable on top of the core profile. For example, the plastics member may be a sliding fit or a snap fit on the top of the core profile. Reinforcement may be provided internally of the core profile, such as in the form of steel profiles inserted into the core profile. Such reinforcement is mainly intended for use with core profile lengths over a predetermined threshold for additional strength. The core profile and or the sheath are preferably shaped to reduce direct contact between them. For example, the sheath may have on its inner spaced surface ribs or the like to provide the only lines of contact with the core profile in certain regions. Additionally or alternatively, the core profile bar can have spaced feet or flanges that make end contact with the sheath.
A preferred sectional profile for the core profiles used in the invention is that of a trapezium having a narrow base and wider top. The sheath preferably has a corresponding profile.
The plastics member, such as the sheath, preferably has a pair of ledges one each side of a connection formation for attachment of the cap. The ledges preferably have gasket material, such as of rubber or other suitable elastomeric material, thereon for sealing against the underside of glazing material. The gasket material may be fitted in grooves or the like in the ledges or may be bonded to or co-extruded onto the ledges. Between the ledges and the connection formation, the sheath preferably has longitudinal channels to provide drainage passages in case of water penetration through the roof beam.
The connection formation of the plastics member, such as the sheath, is preferably in the form of a slot whose sides extend upwardly from the top of the sheath. The sides end with internal lips, whose top surfaces are preferably chamfered for ease of entry of a connection formation of the cap. The cap preferably has an, in use, depending connection formation having at least one pair and preferably two pairs of ribs thereon that can be pushed into the slot of the plastics member and retained there with glazing material sandwiched between the cap and the ledges of the plastics member. Two pairs of ribs are preferably provided on the cap connection formation, so as to allow the cap to be fitted at two different heights relative to the plastics member to accommodate glazing materials of different thickness. Alternatively, the cap may have a single pair of ribs and the slot of the plastics member may have two pairs of internal barbs or the like to allow the cap to be fitted over two different thicknesses of glazing material.
The cap is preferably generally of T-section, the stem of the T providing the connection formation. The cross bar of the T-section preferably has gasket material at ends thereof, such as of rubber or other suitable elastomeric material, for sealing against the topside of glazing material. The gasket material may be fitted in grooves or the like in the ends of the cap crossbar or may be bonded to or co-extruded onto the ends thereof. The cross bar of the cap is preferably arcuate and ends thereof preferably depend to meet the glazing material.
A ridge beam for use with roof beam connectors of the invention is preferably a hollow extrusion having on one or both sides a formation for receiving a connector of the invention. The formation preferably provides a sloping face against which an end face of the connector can abut. Above the end face the ridge formation preferably has a ledge over which a hook formation of the connector can sit. The end face of the ridge formation preferably also includes a slot or groove to receive a lug or the like of a resilient finger of the connector. The lug preferably snaps into the slot or groove when the connector is attached to the ridge beam, to prevent the connector being lifted out of engagement with the ridge beam formation. Extending outwardly from the end face of the ridge beam formation, there is preferably a channel shaped flange to receive a foot of the connector.
To facilitate erection of a conservatory roof using connectors of the invention, it is further proposed that the ridge beam connection formation be notched at the required intervals for positioning of the roof beams. Such notches are preferably provided in the ledge for the hook formation of the connector. Then the connector can have a nib on the underside of the hook formation to locate in an appropriate notch of the ridge connector formation. This will allow the positioning of the roof beams to determined in the factory and the appropriate notches cut or formed, so that erection of the roof on site is facilitated.
An eaves beam for use with roof beam connectors of the invention is preferably a hollow extrusion having on one side a formation for receiving a connector of the invention. The formation preferably provides a sloping face against which an end face of the connector can abut. Above the end face the eaves formation preferably has a ledge over which a hook formation of the connector can sit. The end face of the eaves formation preferably also includes a slot or groove to receive a lug or the like of a resilient finger of the connector. The lug preferably snaps into the slot or groove when the connector is attached to the eaves beam, to prevent the connector being lifted out of engagement with the eaves beam formation. Extending outwardly from the end face of the eaves beam formation, there is preferably a channel shaped flange to receive a foot of the connector.
To facilitate erection of a conservatory roof using connectors of the invention, it is further proposed that the eaves beam connection formation be notched at the required intervals for positioning of the roof beams. Such notches are preferably provided in the ledge for the hook formation of the connector. Then the connector can have a nib on the underside of the hook formation to locate in an appropriate notch of the eaves connector formation. This will allow the positioning of the roof beams to determined in the factory and the appropriate notches cut or formed, so that erection of the roof on site is facilitated.
At corners of a conservatory roof, it may be convenient to provide eaves beam connectors rather than join lengths of eaves beam together directly. Such eaves beam connectors will preferably have formations adapted to receive the roof beam connectors of the invention in a similar manner.
For connection of roof beams at the end of the ridge beam it is proposed to provide a ridge end component having locations adapted to receive roof beam connectors of the invention in a similar manner to the ridge beam itself. It is envisaged that the ridge end component will have specific locations for roof beam connectors at fixed radial angles to each other. The ridge end component will preferably have a stem adapted to fit within the end of the ridge beam.
Where a ridge beam is to be connected to an existing wall, a flashing plate is preferably provided, over which flashing material can be provided that is fixed into the existing brickwork. The flashing plate is preferably locatable on the ridge cap. The flashing plate preferably has scribed lines or grooves to demark removable strips of the plate to take it to a height below a suitable brick course level for the flashing material.
This invention will now be further described, by way of example only, with reference to the accompanying drawings, in which:
Referring to
Turning to
The sheath has a corresponding sectional profile to that of the core profile. Its sidewalls 30 each have a longitudinal rib 32 that serves to space the core profile from the sheath to minimise contact between them. Similarly, the top wall 34 of the sheath has depending ribs 35 again that space the top wall of the core profile from the inside surface of the sheath top wall. Within its top corners the sheath has a pair of ledges 36 that form channels 38 to locate the flanges 26 of the core profile.
The top wall 34 of the sheath has near its side edges gasket material 35 of rubber or other suitable elastomeric material co-extruded or bonded thereon for sealing against the underside of glazing panels 12 mounted on the roof beam. Centrally of the top wall 34 of the sheath is an upstanding connection formation 40 for attachment of the cap to the sheath. Either side of the formation 40 is a groove 42 providing a drainage passage for any water or condensation that may collect on the sheath.
The connection formation 40 is in the form of a slot having a relatively narrow opening between lips 46 at the top ends of the slot sides 48. The cap 20 is generally T-shaped in section and has an arcuate top 50 and a depending limb 52 that has two pairs of barbs 54 on opposite sides thereof. The barbs are shaped so as to pass relatively easily into the slot 40 but to be difficult to remove or displace therefrom. Two pairs of barbs are provided to allow the cap to accommodate two different thicknesses of glazing panel. The cap top has its ends 58 turned downwards and gasket material 59 of rubber or other suitable elastomeric material co-extruded or bonded onto the ends 58 for sealing against the top surfaces of the glazing panels. Because the cap is extruded of plastics material it has some inherent resilience, so that when pushed down onto the sheath and located thereon, the positioning of the barbs will enable the cap ends to exert holding and sealing pressure on the glazing panels.
It is to be noted that the transom or radius end roof beams 14 are of similar construction to the roof beams 15 but with caps that have shorter sides compared to sides 58 and a shorter stem 52.
The hollow nature of the roof beam bar allows for fitting of roof beam plastics connectors 70 that can cooperate with formations of a ridge beam and eaves beam (72, 74) for ease of fitting. The connectors 70 permit snap fitting with cooperating formations of the ridge and eaves beams. The connectors 70 may alternatively be made of metal.
In FIGS. 4 to 8 of the accompanying drawings, a ridge beam 72 for a conservatory roof is formed as a hollow aluminium extrusion having a base 76, a top 78 and sides 80 and 82. The base 76 has at each side a depending L-shaped ledge 84, the ledges providing attachment locations for a decorative cover 86 below the ridge as shown in
The sides 80 and 82 of the ridge beam are shaped to provide roof beam connector receiving formations. These formations comprise flanges 96 extending laterally from the bottom of each of the sides 80 and 82 and are in the form of upwardly open channels. A minor lower part 98 of each side 80 and 82 protrudes relative to the major upper part of each side. Spaced above the protrusions 98 is a second larger box-section protrusion 100 having a bottom wall that with the protrusion 98 forms a slot 102, an outer abutment face 104 and a top 106 having an outer higher part 108 and an inner lower part 110 that forms with side 80 or 82 a channel 112.
The roof beam connectors 70 have a stem 120 that fits into the end of a core profile 16. The stem 120 has bolt holes 122 for receiving bolts (not shown) to fix the connector in the end of the roof beam. The ribs 26 of the core profile of the roof beam provide turning restraint for the bolt heads or nuts. The connector 70 has connecting formations to allow it to be connected to the connector formations of the ridge 72. The connector formations comprise a hook 124 that fits over the top 106 to sit in channel 112, a foot 126 to sit in the channels of flanges 96 and a lug 128 on resilient finger 130 to snap fit into the slot 102 (see also
In order to ensure correct positioning of a connector 70 and hence its roof beam on the ridge, the top 106 of the box-section protrusion 100 is notched at appropriate intervals and the underside of the hook 124 of the connector 70 has a nib 132 that locates in the appropriate notch. Thus, the ridge beam can be prepared in the factory with notches at the correct intervals, to facilitate erection of the roof on site.
The top 106 of the protrusion 100 has its outer higher part 108 formed as a longitudinal channel 138 with its sides having inner lips 140. These channels are to receive plastics sealing trims 142 between the roof beams (see
The top 78 of the ridge beam 72 has a pair of generally upstanding flanges 150, on which locate rain baffles 152. The rain baffles 152 are generally L-shaped, one leg 154 having a slot to locate the rain baffle on a flange 150 and a second leg 156 having co-extruded gasket material strips 158 and 160 extending normally to the end of the leg 156. The cover 92 sits on the second legs of the rain baffles 152 and is held down by captive bolts 162. The bolts have a rectangular head 164 with lips 166 on its shorter sides. The bolts have a stem 168, which has a lower part serrated on opposite sides for receiving a wedge shaped retaining element 90 with a generally U-shaped slot therein having in the base of the U-shaped slot a web that is engageable in a serration 172 of the stem 168 of the bolt 162 (see
On the underside of the cover 92 is a channel formation 174 having returned edges 176. The channel 174 is wide enough to receive the head of a bolt with its longer sides parallel thereto, when the bolt can be turned through 90°, so that the lips 168 of the head of the bolt are retained by the returned edges of the channel 174. At its other end the bolt stem passes through an aperture in the base 76 of the ridge beam. The flanges 88 extending below the base provide a slot for receiving the wedge shaped element 90. The element has on its sides retaining ribs, one of which extends along the full length of the element and the other being shorter, whereby the element can be maneuvered into the slot. Once there, the element is slid along to engage and retain the stem of the bolt.
The decorative cover 92 has an aesthetic profile but it is also capable of receiving in snap-fit fashion other decorative ridge elements, such as cresting pieces.
Also in
Referring now to FIGS. 9 to 12 of the accompanying drawings, at a ridge end remote from a wall against which a conservatory is erected, the ridge beam is provided with a ridge end member moulded of plastics material or alternatively made of metal.
The ridge end members have locations generally designated 204 for receiving roof beam connectors 70 of the type already described above. Such locations 204 comprise a channel closed at its bottom end and having a base 206 with returned side edges 208. The side edges 208 provide lateral restraint and guidance for the connectors. Each location provides a lower slot 210 for the foot of a connector 70, a ledge 212, past which the lug of the connector can snap as the connector is lowered, and the hook of the connector can sit over the free edge of the base 206.
At the wall end of the ridge beam, as shown in
As shown in
FIGS. 14 to 22 illustrate arrangements at the eaves of a conservatory roof according to the invention. In constructing a conservatory roof an eaves beam 74 is fixed on top of windows or walls forming sides of the conservatory. The eaves beam 74 is formed as a hollow aluminium extrusion and has a base 242, an outer wall 244, an inner wall 246 and a sloping top 248.
The outer wall 244 has upper and lower longitudinal slots 250, 252 for receiving snap-in external cladding 254 of plastics material. The inner wall 246 is shaped in a similar fashion to the side of the ridge beam 72 to provide locations for attachment of roof beam connectors 70. Thus, the inner wall 246 has a flange 256 extending therefrom in the form of a channel to receive the foot of a connector 70. Above the flange is a groove 258 for receiving the snap-in lug of a connector 70 and the top of the eaves beam provides a location over which the hook part of a connector 70 can sit. As with the ridge beam, locations for the connectors are provided in the top of the eaves beam in the factory in the form of notches at predetermined intervals, in which the nibs of connectors can locate.
Between the roof beams internal plastics cladding pieces 260 and 262 are added to the eaves beam. The cladding piece 260 fits over the top of the eaves beam and locates in a channel 266 in the top of the eaves beam. On top of the cladding piece 260 is a strip of double-sided tape 261, onto which glazing panels will sealingly sit. The cladding 260, being generally U-shaped in that region will be able to move as the glazing expands and contracts in different temperature conditions. Externally of the roof, the cladding piece 260 has co-extruded gasket material 270 along its depending edge to form a weather and thermal seal with the external cladding 254.
The external cladding has upper and lower grooves 290 and 292 that provide locations for attachment of gutter brackets. Conventionally, the presence of gutters at the eaves of a conservatory roof will provide some thermal insulation. However, with the arrangement illustrated gutters are not essential and the presence of the external cladding 254 can provide thermal insulation for the eaves of the roof.
The second internal cladding piece 262 locates in a groove 272 on the underside of flange 256 and in one or other of three grooves 274 in an extension 276 of the base of the eaves beam. Three grooves are provided, so that the cladding piece position can be adjusted relative to the position of the window frame, on which the eaves beam is mounted, in order to accommodate on site building tolerances.
At corners of the conservatory roof plastics or metal connectors 280 are used to join eaves beam lengths. These connectors 280 are shaped to slidingly fit into ends of eaves beams and also to receive roof beam connectors 70 (see FIGS. 18 to 22 of the drawings). FIGS. 18 to 20 show a right angle corner 280A, such as in a Georgian style conservatory roof and
Internally of corners of the roof at the eaves are corner pieces 300 that conceal junctions between the roof beams and the internal cladding pieces (see
The ridge beam, roof beams and eaves beams can all be cut to length in the factory and have roof beam positions cut in the ridge and eaves beams as appropriate. Also, the roof beams can be fully assembled in the factory, i.e. with connectors 70 added and claddings and weatherproofing trims for the eaves and ridge beam can be fitted in the factory, because the positioning of the roof beams has already been determined and allowed for. Altogether this will help to simplify and speed up the assembly of a conservatory roof on site.
Number | Date | Country | Kind |
---|---|---|---|
0304750.3 | Mar 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB04/00836 | 3/1/2004 | WO | 5/10/2006 |