Constructs for Marker Excision Based on Dual-Function Selection Marker

Information

  • Patent Application
  • 20080050819
  • Publication Number
    20080050819
  • Date Filed
    March 15, 2005
    19 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
The invention relates to improved construct and methods for eliminating maker sequences from the genome of plants, based on dual-function selection marker which—depending on the employed compound—can act as both negative and counter-selection marker.
Description

XI. BRIEF DESCRIPTION OF THE FIGURES


FIG. 1: Basic Principle of the dual-function selection marker

    • A: A mixture population consisting of wild-type, non-transgenic plants (gray color) and transgenic plants comprising the dual-function marker (black color) is treated with either D-alanine or D-isoleucine. While the toxic effect of D-alanine on non-transgenic plants is detoxified by the transgene-mediated conversion (thereby selectively killing the wild-type plantlets), the non-toxic D-isoleucine is converted by the same enzymatic mechanism into a phytotoxic compound (thereby selectively killing the transgenic plantlets).
    • B: The dual-function of the marker can be employed subsequently for construction of marker-free transgenic plants. While the function as a negative selection marker is utilized to allow for insertion of a transgene comprising a gene of interest (GOI) into a wild-type plant (gray color), the counter-selection-function is employed to subsequently delete the selection marker by combining marker-deletion technology and counter-selection (thereby killing the dual-function marker comprising plantlets (black-color)) resulting in plantlets comprising the GOI but lacking the dual function marker (gray hatching).



FIG. 2: Wild-type Arabidopsis thaliana plantlets (left side) and transgenic plantlets comprising the dual function marker (DAAO gene from Rhodotorula gracilis) are treated with either 30 mM D-isoleucine (upper side) or 30 mM D-alanine (bottom side). A toxic effect of D-isoleucine on the transgenic plants and D-alanine on the wild-type plants, respectively, can be observed, while no severe damage can be detected on the respective other group, thereby allowing for clear distinguishing and easy selection of either transgenic or wild-type plants.



FIG. 3 Effect of various D-amino acids on plant growth.

    • Wild type Arabidopsis thaliana plantlets were grown on half-concentrated Murashige-Skoog medium (0.5% (wt/vol) sucrose, 0.8% (wt/vol) agar) supplemented with the indicated D-amino acid at either 3 mM (Panel A) or 30 mM (Panel B). While D-alanine and D-serine are imposing severe phytotoxic effects even at 3 mM concentrations no significant effects can be observed for D-isoleucine.



FIG. 4 D-amino acid dose responses of dao1 transgenic and wild-type A. thaliana.

    • (a-d) Growth of dao1 transgenic line 3:7 (white), 10:7 (light gray), 13:4 (gray) and wild-type (black) plants, in fresh weight per plant, on media containing various concentrations of D-serine, D-alanine, D-isoleucine and D-valine in half-strength MS with 0.5% (wt/vol) sucrose and 0.8% (wt/vol) agar. Different concentration ranges were used for different D-amino acids. The plants were grown for 10 d after germination under 16 h photoperiods at 24° C.; n=10±s.e.m., except for plants grown on D-isoleucine, where smaller Petri dishes were used, (n=6±s.e.m.).
    • (e-l) Photographs of dao1 transgenic line 10:7 (e-h) and wild-type plants (i-l), grown for 10 d on the highest concentrations of the D-amino acid shown in the respective graphs above. All pictures have the same magnification. FW, fresh weight.



FIG. 5: Selection of primary transformants with the DAAO marker.

    • (a-c) DAAO T1 seedlings on media containing 3 mM D-alanine (a), 3 mM D-serine (b) and 50 μg ml-1 kanamycin (c). Seeds were surface-sterilized and sown on half-strength MS plates with 0.5% (wt/vol) sucrose, 0.8% (wt/vol) agar and the respective selective compound, then grown for 5 d after germination under 16 h photoperiods at 24° C.
    • (d) DAAO transgenic plants grown on soil photographed after selection by spraying with (1) D-alanine and (2) D-serine, and wild-type plants sprayed with (3) D-alanine and (4) D-serine. Eight seeds per plot and treatment were sown on soil, and grown for 7 d after germination before applying the selective treatment, which consisted of spraying with aqueous 50 mM solutions of D-alanine or D-serine with 0.05% Tween 80 on three consecutive days.


(e) Northern blot analysis of dao1 mRNA levels from six D-serine- and D-alanine-resistant lines and wild-type plants. Ten μg total RNA was loaded per lane and separated on an agarose gel. Ethidium bromide-stained total RNA bands are shown as loading controls. (f) DAAO activity in six transgenic lines and wild type. A unit of DAAO activity is defined as the turnover of one micromole of substrate per minute. Bars represent means ±s.e.m., n=3


FIG. 6+7 Demonstration of broad applicability of the selection system. D-serine is imposing toxic effects on a variety of different plant species both monocotyledonous and dicotyledonous plants. Effects are demonstrated for popular (FIG. 6A), barley (FIG. 6B), tomato (FIG. 6C), tobacco (FIG. 7A), Arabidopsis thaliana (FIG. 7B), and Corn (Zea mays, FIG. 7C). Similar effects are obtained when using D-alanine instead of D-serine.



FIG. 8-10: Preferred constructs of the invention

    • The following abbreviations apply to the figures in general:
      • A: Sequence A allowing for sequence deletion (e.g., recognition site for recombinase or homology sequence)
      • A′: Sequence A′allowing for sequence deletion (e.g., recognition site for recombinase or homology sequence)
      • A/A′: Sequence as the result of (homologous) recombination of A and A′
      • DAAO: Sequence encoding a d-amino acid oxidase having dual-function marker activity.
      • EN: Sequence encoding sequence specific DNA-endonuclease
      • Trait: Sequence coding for e.g., agronomically valuable trait
      • Pn: Promoter
      • RSn: Recognition sequence for the site-directed induction of DNA double-strand breaks (e.g., S1: First recognition sequence). The recognition sequences may be different (e.g., functioning for different endonucleases) or—preferably—identical (but only placed in different locations).
      • Rn or Sn: Part of recognition sequence RSn remaining after cleavage


FIG.: 8 Preferred basic construct and method

    • A vector comprising the DNA construct (preferably a circular Agrobacterium binary vector) is employed comprising: A first expression cassette for the dual-function marker (DAAO) under control of a promoter functional in plants (P1) and a second expression cassette for an agronomically valuable trait (TRAIT) also under control of (preferably a different) promoter functional in plants (P2). The first expression cassette is flanked by sequences which allow for specific deletion of said first expression cassette (A and A′). A and A′ may be sequences for a sequence-specific recombinase or sequences which allow for homologous recombination between each other. For the later alternative, two identical sequences can be arranged in form of a directed repeat.
    • The DNA construct is inserted into plant cells (1.) and selection is performed making use of the negative selection function of the dual function marker (2.) e.g., employing D-alanine or D-serine. Thereby plant cells or plants are selected comprising the DNA construct. Based on said plant cells or plants deletion of the first expression cassette is initiated (3.) and selection is performed making use of the counter-selection function of the dual function marker (4.) e.g., employing D-isoleucine or D-valine. Thereby plant cells or plants are selected comprising the second expression cassette but lacking the first expression cassette.


FIG.: 9 Construct mediating marker excision via induced homologous recombination The DNA construct introduced into the plant genome by utilizing the negative selection marker function of the dual-function marker is comprising: A first expression cassette for the dual-function marker (DAAO) under control of a promoter functional in plants (P1) and a second expression cassette for an agronomically valuable trait (TRAIT) also under control of (preferably a different) promoter functional in plants (P2). The first expression cassette is flanked by homology sequences A and A′ which allow for homologous recombination between each other, being arranged in form of a directed repeat. Within the DNA construct there is at least one (preferably—as depicted here—two) recognition sequences (RS) (cleavage sites) for a sequence specific endonuclease (RS1, RS2). The two sequences may be different (i.e., for different endonucleases) or—preferably—identical. Cleavage at said recognition sequences (RS1 and RS2) is initiated by the corresponding endonuclease (1.) resulting in double-strand breaks, which are “repaired” by homologous recombination between the homologous end-sequences (probably supported by the cellular DNA repair mechanism). The resulting genome still comprises the second expression cassette for the trait but lacks the first expression cassette for the dual-function marker. Selection is performed making use of the counter-selection function of the dual function marker (2.) e.g., employing D-isoleucine or D-valine. Thereby plant cells or plants are selected comprising the second expression cassette but lacking the first expression cassette.

    • In an preferred embodiment the DNA construct introduced into the plant genome further comprises a third expression cassette for the sequence specific endonuclease (or if recombinases are utilized for the recombinase). The first expression cassette (for the dual-function marker) and the third expression cassette (for the endonuclease) are together flanked by homology sequences A and A′ which allow for homologous recombination between each other, being arranged in form of a directed repeat. Within the DNA construct there is at least one (preferably—as depicted here—two) recognition sequences (RS) (cleavage sites) for a sequence specific endonuclease (RS1, RS2). The two sequences may be different (i.e., for different endonucleases) or—preferably—identical. Expression of the corresponding endonuclease from the third expression cassette is initiated (1.), resulting in cleavage at said recognition sequences (RS1 and RS2) thereby forming in double-strand breaks (2.), which are “repaired” by homologous recombination between the homologous end-sequences (probably supported by the cellular DNA repair mechanism). The resulting genome still comprises the second expression cassette for the trait but lacks the first and third expression cassette. Selection is performed making use of the counter-selection function of the dual function marker (3.) e.g., employing D-isoleucine or D-valine. Thereby plant cells or plants are selected comprising the second expression cassette but lacking the first and third expression cassette.
    • Preferably the expression of the endonuclease is controllable e.g., by employing an inducible promoter (see below for details).


FIG.: 11 D-amino acids are applicable by spraying procedure DAAO transgenic plants grown on soil photographed after selection by spraying with (1) D-alanine and (2) D-serine, and wild-type plants sprayed with (3) D-alanine and (4) D-serine. Eight seeds per plot and treatment were sown on soil, and grown for 7 d after germination before applying the selective treatment, which consisted of spraying with aqueous 50 mM solutions of D-alanine or D-serine with 0.05% Tween 80 on three consecutive days.


FIG.: 12 Alignment of the catalytic site of various D-amino acid oxidases

    • Multiple alignment of the catalytic site of various D-amino acid oxidases allows for determination of a characteristic sequence motif [LIVM]-[LIVM]-H*-[NHA]-Y-G-x-[GSA]-[GSA]-x-G-x5-G-x-A, which allows for easy identification of additional D-amino acid oxidases suitable to be employed within the method and DNA-constructs of the invention.


FIG.: 13 Vector map of construct daaoSceITetOn (Seq ID NO: 15) (length: 12466 bp)

















Position



Abbreviation
Feature
(Base No.)
Orientation







LB
Left Border
7618-7834
direct


35SpA
35S terminator
7345-7549
complement


ptxA promoter

6479-7341
complement


rtTA
Tet repressor
5418-6425
complement


OCS-T
OCS terminator
5118-5343
complement


nit1P
Nit1 promoter
3217-5028
complement


daao
D-amino acid oxidase
2067-3173
complement


nosT
nos terminator
1735-1990
complement


pTOP10P
tet regulated promoter
1270-1660
complement


ISecl
I-Secl endonuclease
 515-1222
complement









I-Sce recognition/cleavage site
445-462
direct










35SpA
35S terminator
196-400
complement


RB
right border
 38-183
direct


ColE1
ColE1 origin of



replication (E. coli)


aadA
Spectomycin/Strepotomycin



resistance


repA/pVS1
repA origin of replication



(Agrobacterium)











    • Furthermore, important restriction sites are indicated with their respective cutting position.





FIG.: 14 Vector map of construct daaoNit-PRecombination (Seq ID NO: 16) (length: 12539 bp)















Abbreviation
Feature
Position (Base No.)
Orientation







LB
Left Border
7691-7907
direct


STPT
sTPT promoter
7619-6302
complement


GUS
GUS gene
6248-4251
complement


35SpA
35S terminator
4176-3972
complement


Nit1P
Nit1 promoter
3882-2071
complement


daao
D-amino acid oxidase
2027-921 
complement


nosT
nos terminator
844-589
complement









I-Sce recognition/cleavage site
445-462
direct










35SpA
35S terminator
400-196
complement


RB
right border
 38-183
direct


ColE1
ColE1 origin of



replication (E. coli)


aadA
Spectomycin/



Strepotomycin



resistance


repA/pVS1
repA origin of



replication



(Agrobacterium)











    • Furthermore, important restriction sites are indicated with their respective cutting position. The GUS gene is comprising an intron (int).








XII. EXAMPLES
General Methods

The chemical synthesis of oligonucleotides can be effected for example in the known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The cloning steps carried out for the purposes of the pre-sent invention, such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, the transfer of nucleic acids to nitrocellulose and nylon membranes, the linkage of DNA fragments, the transformation of E. coli cells, bacterial cultures, the propagation of phages and the sequence analysis of recombinant DNA are carried out as described by Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6. Recombinant DNA molecules were sequenced using an ALF Express laser fluorescence DNA sequencer (Pharmacia, Sweden) following the method of Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).


Example 1
Vector Construction and Plant Transformation

DNA and RNA manipulation were done using standard techniques.


The yeast R. gracilis was grown in liquid culture containing 30 mM D-alanine to induce dao1, the gene encoding DAAO. Total RNA was isolated from the yeast and used for cDNA synthesis. The PCR primers












5′-ATTAGATCTTACTACTCGAAGGACGCCATG-3′




and







5′-ATTAGATCTACAGCCACAATTCCCGCCCTA-3′







were used to amplify the dao1 gene from the cDNA template by PCR. The PCR fragments were sub-cloned into the pGEM-T Easy vector (Promega) and subsequently ligated into the BamHI site of the CaMV 35S expression cassette of the binary vector pPCV702kana17 giving pPCV702:dao1. The vectors were subjected to restriction analysis and sequencing to check that they contained the correct constructs.


Example 1a
Transformation of Arabidopsis thaliana


A. thaliana plants (ecotype Col-0) were grown in soil until they flowered. Agrobacterium tumefaciens (strain GV3101:pMP110 RK) transformed with the construct of interest was grown in 500 mL in liquid YEB medium (5 g/L Beef extract, 1 g/L Yeast Extract (Duchefa), 5 g/L Peptone (Duchefa), 5 g/L sucrose (Duchefa), 0.49 g/L MgSO4 (Merck)) until the culture reached an OD600 0.8-1.0. The bacterial cells were harvested by centrifugation (15 minutes, 5,000 rpm) and resuspended in 500 mL infiltration solution (5% sucrose, 0.05% SILWET L-77 [distributed by Lehle seeds, Cat. No. VIS-02]).


Flowering A. thaliana plants were then transformed by the floral dip method (Clough S J & Bent A F (1998) Plant J. 16, 735-743 (1998) with the transgenic Agrobacterium tumefaciens strain carrying the vector described above by dipping for 10-20 seconds into the Agrobacterium solution. Afterwards the plants were kept in the greenhouse until seeds could be harvested. Transgenic seeds were selected by plating surface sterilized seeds on growth medium A (4.4 g/L MS salts [Sigma-Aldrich], 0.5 g/L MES [Duchefa]; 8 g/L Plant Agar [Duchefa]) supplemented with 50 mg/L kanamycin for plants carrying the nptII resistance marker, or 0.3 to 30 mM D-amino acids (as described below) for plants comprising the dual-function marker of the invention. Surviving plants were transferred to soil and grown in the greenhouse.


Lines containing a single T-DNA insertion locus were selected by statistical analysis of T-DNA segregation in the T2 population that germinated on kanamycin or D-amino acid-containing medium. Plants with a single locus of inserted T-DNA were grown and self-fertilized. Homozygous T3 seed stocks were then identified by analyzing T-DNA segregation in T3 progenies and confirmed to be expressing the introduced gene by northern blot analyses.


Example 1b

Agrobacterium-Mediated Transformation of Brassica napus

Agrobacterium tumefaciens strain GV3101 transformed with the plasmid of interest was grown in 50 mL YEB medium (see Example 4a) at 28° C. overnight. The Agrobacterium solution is mixed with liquid co-cultivation medium (double concentrated MSB5 salts (Duchefa), 30 g/L sucrose (Duchefa), 3.75 mg/l BAP (6-benzylamino purine, Duchefa), 0.5 g/l MES (Duchefa), 0.5 mg/l GA3 (Gibberellic Acid, Duchefa); pH5.2) until OD600 of 0.5 is reached. Petiols of 4 days old seedlings of Brassica napus cv. Westar grown on growth medium B (MSB5 salts (Duchefa), 3% sucrose (Duchefa), 0.8% oxoidagar (Oxoid GmbH); pH 5, 8) are cut. Petiols are dipped for 2-3 seconds in the Agrobacterium solution and afterwards put into solid medium for co-cultivation (co-cultivation medium supplemented with 1.6% Oxoidagar). The co-cultivation lasts 3 days (at 24° C. and ˜50 μMol/m2s light intensity). Afterwards petiols are transferred to co-cultivation medium supplemented with the appropriate selection agent (18 mg/L kanamycin (Duchefa) for plants comprising the nptII marker kanamycin for plants carrying the nptII resistance marker, or 0.3 to 30 mM D-amino acids; as described below) for plants comprising the dual-function marker of the invention) and 300 mg/L Timetin (Duchefa)


Transformed petioles are incubated on the selection medium for four weeks at 24° C. This step is repeated until shoots appear. Shoots are transferred to A6 medium (MS salts (Sigma Aldrich), 20 g/L sucrose, 100 mg/L myo-inositol (Duchefa), 40 mg/L adeninesulfate (Sigma Aldrich), 500 mg/L MES, 0.0025 mg/L BAP (Sigma), 5 g/L oxoidagar (Oxoid GmbH), 150 mg/L timetin (Duchefa), 0.1 mg/L IBA (indol butyric acid, Duchefa); pH 5, 8) supplemented with the appropriate selection agent (18 mg/L kanamycin (Duchefa) for plants comprising the nptII marker kanamycin for plants carrying the nptII resistance marker, or 0.3 to 30 mM D-amino acids; as described below) until they elongated. Elongated shoots are cultivated in A7 medium (A6 medium without BAP) for rooting. Rooted plants are transferred to soil and grown in the greenhouse.


Example 2
Selection Analysis

T1 seeds of transgenic Arabidopsis plants were surface-sterilized and sown in Petri plates that were sealed with gas-permeable tape. The growth medium was half strength MS19 with 0.5% (wt/vol) sucrose and 0.8% (wt/vol) agar, plus 3 mM D-alanine, 3 mM D-serine or 50 μg/ml kanamycin as the selective agent. Plants were grown for 5 d after germination with a 16 h photoperiod at 24° C. To evaluate the selection efficiency on different substrates, 2,074, 1,914 and 1,810 T1 seeds were sown on D-alanine-, D-serine- and kanamycin-selective plates, respectively, and the number of surviving seedlings was counted (44, 32 and 43, respectively).


Example 3
Toxicity Studies

To evaluate the toxic action of 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, wild-type plants were sown on two sets of half strength MS agar plates, each containing one of the compounds in a range of concentrations (0.01-10 mM). Plants were slightly affected by 3-methyl-2-oxopentanoate at 0.1 mM, and total growth inhibition was observed at 1 mM. For 3-methyl-2-oxobutanoate, 5 mM was required for complete inhibition. Further, several attempts were made to probe the nature of D-serine's toxicity. In accordance with studies on E. coli, wildtype it was tried to rescue A. thaliana grown on lethal concentrations of D-serine through amendments with five potential inhibitors of D-serine toxicity (L-serine, calcium-pantothenate, β-alanine, leucine and threonine) added both separately and in combinations in a very wide range of concentrations (0.001-50 μg ml-1), without any success.


Example 4
Enzyme Assays

Soluble proteins were extracted by shaking 0.1 g samples of plant material that had been finely pulverized in a 1.5 ml Eppendorf tube in 1 ml of 0.1 M potassium phosphate buffer, pH 8. DAAO activity was then assayed as follows. Reaction mixtures were pre-pared containing 2,120 μl of 0.1 M potassium phosphate buffer, pH 8, 80 μl of crude protein extract and 100 μl of 0.3 M D-alanine. The samples were incubated for 2 h at 30° C. The enzyme activity was then assessed, by measuring the increase in absorbance at 220 nm (E=1.090 M−1 cm−1) associated with the conversion of D-alanine to pyruvate, after transferring the test tubes to boiling water for 10 min to stop the reaction. In control reactions, D-alanine was added immediately before boiling. One unit of DAAO activity is defined as the turnover of one micromole of substrate per minute, and activity was expressed per gram plant biomass (fresh weight). The breakdown of D-isoleucine and D-valine in DAAO incubations, and the associated production of 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, were analyzed by high-performance liquid chromatography. In other respects the reactions were carried out as described above.


Example 5
Dual-Function Selection Marker

The qualification of the DAAO enzyme as a dual-function selection marker was demonstrated by testing germinated T1 seeds on different selective media. The T-DNA contained both 35S:dao1 and pNos:nptII, allowing D-amino acid and kanamycin selection to be compared in the same lot of seeds.


T1 seeds were sown on medium containing kanamycin (50 μg/ml), D-alanine (3 mM) or D-serine (3 mM), and the transformation frequencies found on the different selective media were 2.37%, 2.12% and 1.67%, respectively (FIG. 5a-c). D-alanine had no negative effect on the transgenic plants, even at a concentration of 30 mM, but at this concentration, D-serine induced significant growth inhibition. Fewer transgenic plants were found after selection on 3 mM D-serine because the compound slightly inhibited the growth of the transgenic plants at this concentration.


Further studies using lower concentrations corroborated this conclusion, and efficient selection using D-serine was achieved on concentrations lower than 1 mM (FIG. 4a). Progeny from the transgenic lines selected on D-serine and D-alanine were later confirmed to be kanamycin resistant, hence ensuring there would be no wild-type escapes from these lines.


Selection of seedlings on media containing D-alanine or D-serine was very rapid compared to selection on kanamycin. These D-amino acids inhibited growth of wild-type plants immediately after the cotyledons of wild-type plants had emerged. Therefore, transformants could be distinguished from non-transformed plants directly after germination. The difference between wild-type and transgenic plants after D-amino acid selection was unambiguous, with no intermediate phenotypes. In contrast, intermediate phenotypes are common when kanamycin resistance is used as a selection marker (FIG. 5c). Furthermore, wild-type seedlings were found to be sensitive to sprayed applications of D-serine and D-alanine. One-week-old seedlings were effectively killed when sprayed on three consecutive days with either 50 mM D-serine or D-alanine, although the sensitivity of wild-type plants rapidly decreased with age, presumably because as the cuticle and leaves became thicker, uptake by the leaves was reduced. Transgenic seedlings were resistant to foliar application of D-alanine or D-serine, so selection on soil was possible (FIGS. 5d, 11).


Transgenic plants grown under D-alanine and D-serine selection conditions developed normally. Early development of transgenic plants from line 3:7, 10:7 and 13:4 was compared with that of wild-type plants by cultivation on vertical agar plates. No differences in biomass, number of leaves, root length or root architecture were detected for the different sets of plants. Furthermore, soil-cultivated wild-type and transgenic plants (line 10:7) showed no differences in the total number of rosette leaves, number of inflorescences and number of siliqua after 4 weeks of growth.


Also, the phenotypes of 17 individual T1 lines, which were picked for T-DNA segregation, were studied and found indistinguishable from that of wild type when grown on soil. A problem sometimes encountered after selection on antibiotics is the growth lag displayed by transformants. This phenomenon is explained as an inhibitory effect of the antibiotic on the transgenic plants (Lindsey K & Gallois P (1990) J. Exp. Bot 41, 529-536). However, unlike seedlings picked from antibiotic selection plates, transgenic seedlings picked from D-amino acid selection plates and transferred to soil were not hampered in their growth and development, even temporarily. A possible reason for this difference is that the DAAO scavenging of D-amino acids may effectively remove the D-amino acid in the plants. Furthermore, D-alanine and D-serine may merely provide additional growth substrates, because their catabolic products are carbon and nitrogen compounds that are central compounds in plant metabolism. Quantification of dao1 mRNA from six independent D-alanine- and D-serine-resistant lines showed a range of different expression levels (FIG. 5e). These different expression levels were mirrored in a range of different DAAO activities (FIG. 5. In spite of these differences in mRNA levels and enzyme activities, no phenotypic variation associated with the D-serine and D-alanine treatment was found, suggesting that the DAAO marker is effective over a range of expression levels. As described above, D-isoleucine and D-valine were found to inhibit growth of the transgenic plants, but not the wild-type plants.


Therefore, plants containing the construct were tested as described above on two sets of media, one containing D-isoleucine and the other containing D-valine at various concentrations, to assess whether DAAO could also be used as a counter-selection marker. Unambiguous counter-selection selection was achieved when seeds were sown on either D-isoleucine or D-valine at concentrations greater than 10 mM (FIG. 4c,d).


Thirteen individual lines expressing DAAO were tested for their response to D-isoleucine and all of them were effectively killed, whereas wild-type plants grew well, with no sign of toxicity. Similar results were obtained for D-valine, although this compound was found to have a moderately negative effect on wild-type plants at higher concentrations (FIG. 4d). The keto acid produced in DAAO catabolism of D-isoleucine is the same as that formed when L-isoleucine is metabolized by the endogenous branched-chain amino acid transaminase [EC: 2.6.1.42], namely 3-methyl-2-oxopentanoate (Kyoto Encyclopedia of Genes and Genomes, metabolic pathway website, http://www.genome.ad.jp/kegg/metabolism.html).


Presumably endogenous transaminase may be specific for the L-enantiomer, so the corresponding D-enantiomer is not metabolized in wildtype plants, but only in plants expressing DAAO. The negative effects of L-isoleucine (but not of the D-form) observed on wildtype plants, supports this speculation. Incubation of cell-free extracts from dao1 transgenic line 10:7 with D-isoleucine and D-valine resulted in 15-fold and 7-fold increases in production of 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, respectively, compared to extracts of wild-type plants. Further, 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate impaired growth of A. thaliana, corroborating the suggestion that these compounds, or products of their metabolism, are responsible for the negative effects of D-isoleucine and D-valine on the transgenic plants.


The toxicity of some D-amino acids on organisms is not well understood, and has only occasionally been studied in plants (Gamburg K Z & Rekoslavskaya N I (1991) Fiziologiya Rastenii 38, 1236-1246). Apart from A. thaliana, we have also tested the susceptibility of other plant species to D-serine, including poplar, tobacco, barley, maize, tomato and spruce. We found all tested species susceptible to D-serine at concentrations similar to those shown to be toxic for A. thaliana. A proposed mechanism for D-serine toxicity in bacteria is competitive inhibition of a-alanine coupling to pantoic acid, thus inhibiting formation of pantothenic acid (Cosloy S D & McFall E (1973) J. Bacteriol. 114, 685-694). It is possible to alleviate D-serine toxicity in D-serine-sensitive strains of Escherichia coli by providing pantothenic acid or â-alanine in the medium, but D-serine toxicity in A. thaliana could not be mitigated using these compounds. A second putative cause of D-amino acid toxicity is through competitive binding to tRNA. Knockout studies of the gene encoding D-Tyr-tRNATyr deacylase in E coli have shown that the toxicity of D-tyrosine increases in the absence of deacylase activity (Soutourina J et al. (1996) J. Biol. Chem. 274, 19109-19114), indicating that D-amino acids interfere at the tRNA level. Genes similar to that encoding bacterial deacylase have also been identified in A. thaliana (Soutourina J et al. (1996) J. Biol. Chem. 274, 19109-19114), corroborating the possibility that the mode of toxic action of D-amino acids might be through competitive binding to tRNA.


Example 6
Constructs Useful for Self-Excising Expression Cassettes Using I-SceI

Two expression constructs are constructed for carrying out the present invention (SEQ ID NO: 15, 16). The backbone of both plasmid constructs (pSUN derivative) contains origins for the propagation in E coli as well as in Agrobacterium and an aadA expression cassette (conferring spectinomycin and streptomycin resistance) to select for transgenic bacteria cells. The sequences for constructing the DNA constructs are amplified incorporating the appropriate restriction sites for subsequent cloning by PCR. Cloning was done by standard methods as described above. The sequence of the constructs is verified by DNA sequence analysis.


Example 6a
DAAO Driven by Constitutive Nitrilase Promoter

The first DNA construct (SEQ ID NO: 16) comprises an expression cassette for the D-amino acid oxidase (DAAO) from Rhodotorula gracilis under control of the Arabidopsis thaliana Nitrilase promoter. The DAAO cassette is flanked by a direct repeat of the 35S terminator functioning both as transcription terminator of the DAAO expression cassette and as homology sequences.


Further comprised is a expression cassette for the β-glucuronidase which may function as a substitute for an agronomically valuable trait under control of the Arabidopsis sTPT promoter (i.e. TPT promoter truncated version, WO 03/006660; SEQ ID NO: 27 cited therein), and the CaMV 35S terminator.


Example 6b
Self-Excisable DAAO Cassette

The second DNA (SEQ ID NO: 15) comprises an expression cassette for the D-amino acid oxidase (DAAO) from Rhodotorula gracilis under control of the Arabidopsis thaliana Nitrilase promoter. The DNA construct further comprises a Tet on expression system. This allows for induced expression of the I-Sce-I homing endonuclease which is placed under control of a Tet-regulatable promoter. The system further requires expression of the Tet-repressor, which is realized under control of the constitutive ptXA promoter from Pisum sativa.


Both the sequences encoding the DAAO cassette, the I-Sce-I expression cassette, and the rtTA expression cassette (for the reverse tetracycline responsive repressor) are flanked by a direct repeat of the 35S terminator functioning both as transcription terminator of the I-Sce-I expression cassette and as homology sequences.


Example 7
Use of the Constructs for the Method of the Invention
Example 7.1
Co-Transformation


Arabidopsis thaliana plants are transformed as described above with a mixture of DNA construct I (binary vector SEQ ID NO: 16) and a second binary vector comprising a GFP (green fluorescence protein) expression cassette. In a first selection process transgenic plants are selected comprising both constructs by employing D-alanine mediated selection. 3 mM and 30 mM D-alanine are used.


D-alanine resistant plants comprising the first DNA construct (detectable by GUS staining) also comprising the gfp gene (as assessed by green fluorescence) are isolated and crossed with wild-type plants. Resulting seeds are used for a second counter-selection process, wherein said seeds are germinated on D-isoleucine comprising medium (comprising either 3 mM or 30 mM D-isoleucine). D-isoleucine resistant plants—comprising the gfp gene—can be easily selected.


Example 7.2
Marker Excision


Arabidopsis thaliana plants are transformed as described above with a mixture of DNA construct I (binary vector SEQ ID NO: 16). In a first selection process transgenic plants are selected comprising construct I by employing D-alanine mediated selection. 3 mM and 30 mM D-alanine are used.


D-alanine resistant plants comprising the first DNA construct (detectable by GUS staining) are isolated and crossed with a transgenic master plant comprising a transgenic expression cassette for the I-Sce-I homing endonuclease under control of a constitutive promoter (as described in WO 03/004659). Resulting seeds are used for a second counter-selection process, wherein said seeds are germinated on D-isoleucine comprising medium (comprising either 3 mM or 30 mM D-isoleucine). D-isoleucine resistant plants still comprising the GUS-expression cassette can be easily selected.


Example 7.3
Use of a Self-Excisable Marker Cassette


Arabidopsis thaliana plants are transformed as described above with a mixture of DNA construct II (binary vector SEQ ID NO: 15). In a first selection process transgenic plants are selected comprising construct II by employing D-alanine mediated selection. 3 mM and 30 mM D-alanine are used.


D-alanine resistant plant cells comprising the DNA construct II are isolated and further cultivated on medium lacking D-alanine. Doxycycline (Sigma; 1 to 5 μg/ml) is added for induction of the marker excision process and cells are incubated for 24 to 48 h on said induction medium. Subsequently cells are further incubated for 3 to 5 days on medium lacking the inducer and D-amino acids (to allow for reduction of DAAO protein levels from prior expression). The resulting cells are used for a second counter-selection process, wherein said cells are further selected on D-isoleucine comprising medium (comprising either 3 mM or 30 mM D-isoleucine). Selected D-isoleucine resistant cells are regenerated into fertile plants and assessed for their transgenic status. By PCR mediated analysis it can be demonstrated that the region flanked by the 35S terminator sequences was accurately excised from the plant genome deleting both the I-SceI expression cassett, the DAAO expression cassette, and the rtTA expression cassette (for the reverse tetracycline responsive repressor)

Claims
  • 1. A method for producing a transgenic plant comprising: i) transforming a plant cell with a first expression cassette comprising a nucleic acid sequence encoding a D-amino acid oxidase operably linked with a promoter allowing expression in plant cells or plants, in combination with at least one second expression cassette suitable for conferring to said plant an agronomically valuable trait, andii) providing at least one first compound X, which is phytotoxic against plant cells not functionally expressing said D-amino acid oxidase, wherein said compound X can be metabolized by said D-amino acid oxidase into one or more compound(s) Y which are non-phytotoxic or less phytotoxic than compound X, andiii) treating said transformed plant cells of step i) with said first compound X in a phytotoxic concentration and selecting plant cells comprising in their genome both said first and said second expression cassette, wherein said first expression cassette is conferring resistance to said transformed plant cells against said compound X by expression of said D-amino acid oxidase, andiv) providing at least one second compound M, which is non-phytotoxic or moderately phytotoxic against plant cells not functionally expressing said D-amino acid oxidase, wherein said compound M can be metabolized by said D-amino acid oxidase into one or more compound(s) N which are phytotoxic or more phytotoxic than compound M, andv) breaking the combination between said first expression cassette and said second expression cassette and treating resulting said plant cells with said second compound M in a concentration toxic to plant cells still comprising said first expression cassette, and selecting plant cells comprising said second expression cassette but lacking said first expression cassette.
  • 2. The method of claim 1, wherein said first expression cassette for said D-amino acid oxidase and said second expression cassette for said agronomically valuable trait are a) both comprised in one DNA construct and combination is broken by deletion or excision of said first expression cassette for said D-amino acid oxidase, orb) are comprised on separate DNA constructs which are transformed in combination by co-transformation into said plant cells, and combination is broken by subsequent segregation of the two expression cassettes.
  • 3. The method of claim 1, wherein said method for producing a transgenic plant comprises the steps of: i) transforming a plant cell with a first DNA construct comprising a) a first expression cassette comprising a nucleic acid sequence encoding a D-amino acid oxidase operably linked with a promoter allowing expression in plant cells or plants, wherein said first expression cassette is flanked by sequences which allow for specific deletion of said first expression cassette, andb) at least one second expression cassette suitable for conferring to said plant an agronomically valuable trait, wherein said second expression cassette is not localized between said sequences which allow for specific deletion of said first expression cassette, andii) providing at least one first compound X, which is phytotoxic against plant cells not functionally expressing said D-amino acid oxidase, wherein said compound X can be metabolized by said D-amino acid oxidase into one or more compound(s) Y which are non-phytotoxic or less phytotoxic than compound X, andiii) treating said transformed plant cells of step i) with said first compound X in a phytotoxic concentration and selecting plant cells comprising in their genome said first DNA construct, conferring resistance to said transformed plant cells against said compound X by expression of said D-amino acid oxidase, andiv) providing at least one second compound M, which is non-phytotoxic or moderately phytotoxic against plant cells not functionally expressing said D-amino acid oxidase, wherein said compound M can be metabolized by said D-amino acid oxidase into one or more compound(s) N which are phytotoxic or more phytotoxic than compound M, andv) inducing deletion of said first expression cassette from the genome of said transformed plant cells and treating said plant cells with said second compound M in a concentration toxic to plant cells still comprising said first expression cassette, thereby selecting plant cells comprising said second expression cassette but lacking said first expression cassette.
  • 4. The method of claim 1 further comprising the step of regeneration of a fertile plant.
  • 5. The method of claim 1, wherein said first compound X comprises a D-amino acid structure selected from the group consisting of D-tryptophane, D-histidine, D-arginine, D-threonine, D-methionine, D-serine, and D-alanine, or derivatives thereof.
  • 6. The method of claim 1, wherein said second compound M comprises a D-amino acid structure selected from the group consisting of D-isoleucine, D-valine, D-asparagine, D-leucine, D-lysine, D-proline, and D-glutamine, or derivatives thereof.
  • 7. The method of claim 1, wherein deletion of said first expression cassette for the D-amino acid oxidase is realized by a method selected from: a) recombination induced by a sequence specific recombinase, wherein said first expression cassette is flanked by corresponding recombination sites in a way that recombination between said flanking recombination sites results in deletion of the sequences in-between from the genome, orb) homologous recombination between homology sequences A and A′ flanking said first expression cassette, induced by a sequence-specific double-strand break caused by a sequence specific endonuclease, wherein said homology sequences A and A′ have sufficient length and homology in order to ensure homologous recombination between A and A′, and having an orientation which—upon recombination between A and A′—will lead to excision of said first expression cassette from the genome of said plant.
  • 8. The method of claim 7, wherein the recombinase or sequence-specific endonuclease, respectively, is expressed or combined with its corresponding recombination or recognition site, respectively, by a method selected from the group consisting of: a) incorporation of a second expression cassette for expression of the recombinase or sequence-specific endonuclease operably linked to a plant promoter into said DNA construct, together with said first expression cassette flanked by said sequences which allow for specific deletion,b) incorporation of a second expression cassette for expression of the recombinase or sequence-specific endonuclease operably linked to a plant promoter into the plant cells or plants used as target material for the transformation thereby generating master cell lines or cells,c) incorporation of a second expression cassette for expression of the recombinase or sequence-specific endonuclease operably linked to a plant promoter into a separate DNA construct, which is transformed by way of co-transformation with said first DNA construct into said plant cells, andd) incorporation of a second expression cassette for expression of the recombinase or sequence-specific endonuclease operably linked to a plant promoter into the plant cells or plants which are subsequently crossed with plants comprising the DNA construct of the invention.
  • 9. The method of claim 7, wherein deletion of said first expression cassette for the D-amino acid oxidase is induced or activated by inducing expression and/or activity of said sequence-specific recombinase or endonuclease by a method selected from the group consisting of a) inducible expression by operably linking the sequence encoding said recombinase or endonuclease to an inducible promoter, andb) inducible activation, by employing a modified recombinase or endonuclease comprising a ligand-binding-domain, wherein activity of said modified recombinase or endonuclease can by modified by treatment of a compound having binding activity to said ligand-binding-domain.
  • 10. The method of claim 2, wherein the DNA construct comprises a) a first expression cassette comprising a nucleic acid sequence encoding a D-amino acid oxidase operably linked with a promoter allowing expression in plant cells or plants, wherein said first expression cassette is flanked by sequences which allow for specific deletion of said first expression cassette, andb) at least one second expression cassette suitable for conferring to said plant an agronomically valuable trait, wherein said second expression cassette is not localized between said sequences which allow for specific deletion of said first expression cassette
  • 11. A DNA construct suitable for the method of claim 1, comprising a) a first expression cassette comprising a nucleic acid sequence encoding a D-amino acid oxidase operably linked with a promoter allowing expression in plant cells or plants, wherein said first expression cassette is flanked by sequences which allow for specific deletion of said first expression cassette, andb) at least one second expression cassette suitable for conferring to said plant an agronomically valuable trait, wherein said second expression cassette is not localized between said sequences which allow for specific deletion of said first expression cassette.
  • 12. The DNA construct of claim 11, wherein said D-amino acid oxidase expressed from said first expression cassette has metabolizing activity against at least one D-amino acid and comprises the following consensus sequence: [LIVM]-[LIVM]-H*-[NHA]-Y-G-x-[GSA]-[GSA]-x-G-X5-G-x-A
  • 13. The DNA construct of claim 11, wherein said D-amino acid oxidase has enzymatic activity against at least one of the amino acids selected from the group consisting of D-alanine, D-serine, D-isoleucine, D-valine, and derivatives thereof.
  • 14. The DNA construct of claim 11 wherein said D-amino acid oxidase is described by a sequence of the group consisting of sequences described by GenBank or SwisProt Acc. No. JX0152, O01739, O33145, O35078, O45307, P00371, P14920, P18894, P22942, P24552, P31228, P80324, Q19564, Q28382, Q7PWX4, Q7PWY8, Q7Q7G4, Q7SFW4, Q7Z312, Q82MI8, Q86JV2, Q8N552, Q8P4M9, Q8PG95, Q8R2R2, Q8SZN5, Q8VCW7, Q921M5, Q922Z0, Q95XG9, Q99042, Q99489, Q9C1L2, Q9JXF8, Q9V5P1, Q9VM80, Q9X7P6, Q9Y7N4, Q9Z1M5, Q9Z302, and U60066.
  • 15. The DNA construct of claim 11 wherein said D-amino acid oxidase is selected from the group of amino acid sequences consisting of a) sequences described by SEQ ID NO: 2, 4, 6, 8, 10, 12, and 14,b) sequences having a sequence homology of at least 40% with a sequence as described by SEQ ID NO: 2, 4, 6, 8, 10, 12, and 14, andc) sequences hybridizing under low or high stringency conditions with a sequence as described by SEQ ID NO: 2, 4, 6, 8, 10, 12, and 14.
  • 16. The DNA construct of claim 11, wherein said sequences which allow for specific deletion of said first expression cassette are selected from the group of sequences consisting of a) recombination sites for a sequences-specific recombinase arranged in a way that recombination between said flanking recombination sites results in deletion of the sequences in-between from the genome, andb) homology sequences A and A′ having a sufficient length and homology in order to ensure homologous recombination between A and A′, and having an orientation which—upon recombination between A and A′—will result in deletion of the sequences in-between from the genome.
  • 17. The DNA construct of claim 16, wherein said recombination sites correspond to a recombinase selected from the group consisting of a cre recombinase, a FLP recombinase, a Gin recombinase, a Pin recombinase, and a R recombinase.
  • 18. The DNA construct of claim 16, wherein said DNA construct comprises a recognition site of at least 10 base pairs for a sequence specific endonuclease between said homology sequences A and A′.
  • 19. The DNA construct of claim 18, wherein said recognition site corresponds to a sequence-specific endonuclease selected from the group consisting of homing endonucleases I-SceI, I-CpaI, I-CpaII, I-CreI, and I-ChuI and chimeras thereof with ligand-binding domains.
  • 20. The DNA construct of claim 16, wherein said DNA construct further comprises a expression cassette for the sequence specific endonuclease or recombinase suitable for mediating deletion of the first expression cassette for the D-amino acid oxidase.
  • 21. The DNA construct of claim 20, wherein expression and/or activity of said sequence-specific recombinase or endonuclease can be induced and/or activated by a method selected from the group consisting of a) inducible expression by operably linking the sequence encoding said recombinase or endonuclease to an inducible promoter, andb) inducible activation, by employing a modified recombinase or endonuclease comprising a ligand-binding-domain, wherein activity of said modified recombinase or endonuclease can by modified by treatment of a compound having binding activity to said ligand-binding-domain.
  • 22. A transgenic vector comprising the DNA construct of claim 11.
  • 23. A transgenic cell comprising the DNA construct of claim 11 or a vector comprising said construct.
  • 24. The transgenic cell of claim 23, wherein said cell is a plant cell.
  • 25. A transgenic, non-human organism comprising the DNA construct of claim 11, a vector comprising said construct, or a transgenic cell comprising said construct or vector.
  • 26. The transgenic, non-human organism of claim 25 wherein said organism is a plant.
  • 27. The method of claim 3 further comprising the step of regeneration of a fertile plant.
  • 28. The method of claim 3, wherein said first compound X comprises a D-amino acid structure selected from the group consisting of D-tryptophane, D-histidine, D-arginine, D-threonine, D-methionine, D-serine, and D-alanine, or derivatives thereof.
  • 29. The method of claim 3, wherein said second compound M comprises a D-amino acid structure selected from the group consisting of D-isoleucine, D-valine, D-asparagine, D-leucine, D-lysine, D-proline, and D-glutamine, or derivatives thereof.
Priority Claims (1)
Number Date Country Kind
04006358.8 Mar 2004 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP05/02734 3/15/2005 WO 00 9/15/2006