The present invention relates to a container comprising a housing, a filter component and a consumable composition. The container is suitable for use in a laundry or fabric treating apparatus.
Dry cleaning solvents are commonly purified by distillation. Distillation equipment is expensive, energy consuming and can pose safety issues when flammable solvents are involved. Therefore, non-distillative solvent purification processes, such as filtration, have been used.
Conventional filtering apparatuses and processes typically employ filter components that need to be replaced periodically. For example, an automobile has an oil filter that typically is replaced each time the oil is changed in the automobile. The procedure of changing the oil in an automobile is at least a two step and/or two product procedure; namely, adding the oil to the engine and replacing the oil filter. The oil is purchased in containers which are separate and discrete from the oil filter. Accordingly, multi-step/multi-product filtering processes are complex and burdensome. As a result, it is desirable to have a less burdensome, single-step/single product filtering process.
The present invention fulfills the need described above by providing a container that comprises a filter component. The container of the present invention is suitable for use with an apparatus that is adapted to receive the container.
In one aspect of the present invention, the container comprises:
Housing
The housing may be made of any suitable material such as non-metal and/or metal materials, such as plastics, metal and glass.
It is desirable that the housing is adapted to be received by an apparatus that employs such containers. The housing is adapted such that the container can be releasably engaged in such apparatus. Further, it is desirable that the apparatus has a container receiving port for receiving the container. Further, the housing is adapted such that it engages the apparatus in a “lock and key” fashion.
Filter Component
The filter component typically comprises an adsorbent material and/or absorbent material.
Adsorbent Material
The adsorbent material useful in the processes of the present invention comprises a polar agent and an apolar agent. Typically, the polar agents and apolar agents are present in the adsorbent material at a ratio of from about 1:10 to about 10:1 or from about 1:5 to about 5:1 or from about 1:2 to about 3:1.
In one embodiment, the adsorbent material has a surface area of from about 10 m2/gram to about 1000 m2/gram or from about 100 m2/gram to about 1000 m2/gram or from about 250 m2/gram to about 1000 m2/gram or even about 500 m2/gram to about 1000 m2/gram.
In one embodiment, the adsorbent material has an average particle size of from about 0.1 μm to about 250 μm.
In another embodiment, the adsorbent material has an average particle size of from about 0.1 μm to about 500 μm.
In another embodiment, the adsorbent material comprises a polar and apolar agent and another agent selected from the group consisting of: a polar agent, an apolar agent and optionally, a charged agent, wherein two or more agents are in the form of commingled agents in a unitary physical form.
In yet another embodiment, the adsorbent material comprises a polar and apolar agent and another agent selected from the group consisting of: a polar agent, an apolar agent and optionally, a charged agent, wherein two or more agents are in the form of layered agents.
In still another embodiment, the adsorbent material comprises a separate, discrete polar and apolar agent and a separate, discrete charged agent, such that the contaminant-containing lipophilic fluid contacts both the separate, discrete agents.
In still yet another embodiment, the adsorbent material comprises discrete particles.
In even still another embodiment, the adsorbent material is in the form of discrete particles.
Alternatively, the adsorbent material is in the form of a fibrous structure. Typically the fibrous structure is a non-woven fibrous structure. However, it could be a woven fibrous structure.
In another embodiment, the adsorbent material is in the form of discrete particles that are embedded in and/or coated on and/or impregnated in and/or bound to a fibrous structure.
The adsorbent material may comprise (1) charged agents and (2) polar and apolar agents commingled together. The polar agents are typically in the form of discrete particles and the apolar agents are typically in the form of a fibrous structure, wherein the discrete particle polar agents are embedded in and/or coated on and/or impregnated in and/or bound to a fibrous structure, typically a non-woven fibrous structure.
a. Polar Agents
In one embodiment, a polar agent useful in the adsorbent material of the present invention has the formula:
Ya—ObX
wherein Y is Si, Al, Ti, P; a is from about 1 to about 5; b is from about 1 to about 10; and X is a metal.
In another embodiment, a polar agent suitable for use in the adsorbent material of the present invention is selected from the group consisting of: silica, diatomaceous earth, aluminosilicates, polyamide resin, alumina, hydrogels, zeolites and mixtures thereof. Preferably, the polar agent is silica, more specifically silica gel.
Nonlimiting examples of monomers that comprise the hydrogels of the present invention include hydroxyalkyl acrylates, hydroxyalkyl methacrylates, N-substituted acrylamides, N-substituted methacrylamides, N-vinyl-2-pyrrolidone, N-acroylpyrrolidone, acrylics, methacrylics, vinyl acetate, acrylonitrile, styrene, acrylic acid, methacrylic acid, crotonic acid, sodium styrene sulfonate, sodium 2-sulfoxyethyl methacrylate, 2-acrylamido-2-methylpropanesulfonic acid, vinylpyridine, aminoethyl methacrylates, 2-methacryloyloxytrimethylammonium chloride, N,N′-methylenebisacrylamide, poly(ethylene glycol)dimethacrylate, 2,2′-(p-phenylenedioxy diethyl dimethacrylate, divinylbenzene and triallylamine.
In yet another embodiment, a polar agent suitable for use in the adsorbent material of the present invention has an average particle size of from about 0.5 μm to about 500 μm.
b. Apolar Agents
Apolar agents suitable for use in the adsorbent material of the present invention comprise one or more of the following: activated carbon, polystyrene, polyethylene, and/or divinyl benzene. The activated carbon may be in powdered form and/or has a surface area of from about 50 m2/gram to about 200 m2/gram, typically it's around about 75 m2/gram to about 125 m2/gram m2/gram.
c. Charged Agents
In one embodiment, the charged agent is selected from the group consisting of: anionic materials, cationic materials, zwitterionic materials and mixtures thereof.
In another embodiment, the charged agent has the formula:
[W-Z] T
wherein W is Si, Al, Ti, P, or a polymer backbone; Z is a charged substituent group and T is a counterion selected from alkaline, alkaline earth metals and mixtures thereof. For example, T may be: Sodium, potassium, ammonium, alkylammonium derivatives, hydrogen ion; chloride, hydroxide, fluoride, iodide, carboxylate, etc.
The polymer backbone is typically comprises a material selected from the group consisting of: polystyrene, polyethylene, polydivinyl benzene, polyacrylic acid, polyacrylamide, polysaccharide, polyvinyl alcohol, copolymers of these and mixtures thereof.
The charged substituent typically comprises sulfonates, phosphates, quaternary ammonium salts and mixtures thereof. The charged substituent may comprise alcohols; diols; salts of carboxylates; salts of primary and secondary amines and mixtures thereof The W typically comprises from about 1% to about 15% by weight of W of the charged agent.
In another embodiment, the charged agent is capable of regeneration such that the charged agent can release any contaminant that it temporarily removes from the contaminant-containing lipophilic fluid upon being exposed to an environmental condition. An “environmental condition” as used herein means any physical or chemical condition that causes the charged agent to release the contaminant. Nonlimiting examples of environmental conditions include exposing the charged agent to an acid, a base and/or a salt. The charged agents that are capable of regeneration typically exhibit a pKa or pKb of from about 2 to about 8. Charged agents that are capable of regeneration can be reused for multi-cycle contaminant removal from lipophilic fluids.
Absorbent Materials
The absorbent materials of the present invention may comprise one or more water absorbing agents. Suitable water absorbing agents and/or absorbent materials comprising water absorbing agents of the present invention are described herein below.
The absorbent materials, especially superabsorbent materials, absorb at least about 1 times their dry weight, more typically at least about 10 times their dry weight, even at least about 50 times their dry weight, and even at least about 100 times their dry weight or even at least about 150 times their dry weight.
Hydrogel-Forming Absorbent Polymers
The absorbent polymers of the present invention preferably comprise at least one hydrogel-forming absorbent polymer (also referred to as hydrogel-forming polymer). Hydrogel-forming polymers useful in the present invention include a variety of water-insoluble, but water-swellable polymers capable of absorbing aqueous liquids. Such hydrogel-forming polymers are well known in the art and any of these polymers are useful in the present invention.
Hydrogel-forming absorbent polymers are also commonly referred to as “hydrocolloids,” or “absorbent” materials and can include polysaccharides such as carboxymethyl starch, carboxymethyl cellulose, and hydroxypropyl cellulose; nonionic types such as polyvinyl alcohol, and polyvinyl ethers; cationic types such as polyvinyl pyridine, polyvinyl morpholinione, and N,N-dimethylaminoethyl or N,N-diethylaminopropyl acrylates and methacrylates, and the respective quaternary salts thereof. Typically, hydrogel-forming absorbent polymers useful in the present invention have a multiplicity of anionic or cationic functional groups such as sulfonic acid or amide or amino groups, and more typically carboxy, groups. Examples of polymers suitable for use herein include those that are prepared from polymerizable, unsaturated, acid-containing monomers. Examples of cationic polymers with cationic groups are prepared from base-containing monomers. Thus, such monomers include the olefinically unsaturated acids and anhydrides that contain at least one carbon-to-carbon olefinic double bond. More specifically, these monomers can be selected from olefinically unsaturated carboxylic acids and acid anhydrides, olefinically unsaturated sulfonic acids, and mixtures thereof. As indicated above, the nature of the hydrogel-forming absorbent polymer is not critical to the present invention; nonetheless, the selection of the optimal polymeric material may enhance the performance characteristics of the present invention. The disclosure that follows describes preferred properties of the absorbent polymers useful herein. These properties should not be interpreted as limitations; rather, they merely indicate the progression that has occurred in the absorbent polymer art over the past several years.
Some non-acid monomers can also be included, usually in minor amounts, in preparing the hydrogel-forming absorbent polymers herein. Such non-acid monomers can include, for example, the water-soluble or water-dispersible esters of the acid-containing monomers, as well as monomers that contain no carboxylic or sulfonic acid groups at all. Optional non-acid monomers can thus include monomers containing the following types of functional groups: carboxylic acid or sulfonic acid esters, hydroxyl groups, amide-groups, amino groups, nitrile groups, quaternary ammonium salt groups, aryl groups (e.g., phenyl groups, such as those derived from styrene monomer). These non-acid monomers are well-known materials and are described in greater detail, for example, in U.S. Pat. No. 4,076,663 (Masuda et al.), issued Feb. 28, 1978, and in U.S. Pat. No. 4,062,817 (Westerman), issued Dec. 13, 1977, both of which are incorporated by reference.
Olefinically unsaturated carboxylic acid and carboxylic acid anhydride monomers include the acrylic acids typified by acrylic acid itself, methacrylic acid, ethacrylic acid, α-chloroacrylic acid, a-cyanoacrylic acid, β-methylacrylic acid (crotonic acid), (α-phenylacrylic acid, β-acryloxypropionic acid, sorbic acid, α-chlorosorbic acid, angelic acid, cinnamic acid, p-chlorocinnamic acid, β-sterylacrylic acid, itaconic acid, citroconic acid, mesaconic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, tricarboxyethylene and maleic acid anhydride.
Olefinically unsaturated sulfonic acid monomers include aliphatic or aromatic vinyl sulfonic acids such as vinylsulfonic acid, allyl sulfonic acid, vinyl toluene sulfonic acid and styrene sulfonic acid; acrylic and methacrylic sulfonic acid such as sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-methacryloxypropyl sulfonic acid and 2-acrylamide-2-methylpropane sulfonic acid.
Preferred hydrogel-forming absorbent polymers for use in the present invention contain carboxy groups. These polymers include hydrolyzed starch-acrylonitrile graft copolymers, partially neutralized hydrolyzed starch-acrylonitrile graft copolymers, starch-acrylic acid graft copolymers, partially neutralized starch-acrylic acid graft copolymers, saponified vinyl acetate-acrylic ester copolymers, hydrolyzed acrylonitrile or acrylamide copolymers, slightly network crosslinked polymers of any of the foregoing copolymers, partially neutralized polyacrylic acid, and slightly network crosslinked polymers of partially neutralized polyacrylic acid. These polymers can be used either solely or in the form of a mixture of two or more different polymers. Examples of these polymer materials are disclosed in U.S. Pat. No. 3,661,875, U.S. Pat. No. 4,076,663, U.S. Pat. No. 4,093,776, U.S. Pat. No. 4,666,983, and U.S. Pat. No. 4,734,478.
Most preferred polymer materials for use in making the hydrogel-forming absorbent polymers are slightly network crosslinked polymers of partially neutralized polyacrylic acids and starch derivatives thereof. Most preferably, the hydrogel-forming absorbent polymers comprise from about 50 to about 95%, preferably about 75%, neutralized, slightly network crosslinked, polyacrylic acid (i.e., poly (sodium acrylate/acrylic acid)). Network crosslinking renders the polymer substantially water-insoluble and, in part, determines the absorptive capacity and extractable polymer content characteristics of the hydrogel-forming absorbent polymers. Processes for network crosslinking these polymers and typical network crosslinking agents are described in greater detail in U.S. Pat. No. 4,076,663.
While the hydrogel-forming absorbent polymer is preferably of one type (i.e., homogeneous), mixtures of polymers can also be used in the present invention. For example, mixtures of starch-acrylic acid graft copolymers and slightly network crosslinked polymers of partially neutralized polyacrylic acid can be used in the present invention.
The hydrogel-forming polymer component may also be in the form of a mixed-bed ion-exchange composition comprising a cation-exchange hydrogel-forming absorbent polymer and an anion-exchange hydrogel-forming absorbent polymer. Such mixed-bed ion-exchange compositions are described in, e.g., U.S. patent application Ser. No. 09/130,321, filed Jan. 7, 1998 by Ashraf, et al. (P&G Case 6976R—titled “A
The hydrogel-forming absorbent polymers useful in the present invention can have a size, shape and/or morphology varying over a wide range. These polymers can be in the form of particles that do not have a large ratio of greatest dimension to smallest dimension (e.g., granules, pulverulents, interparticle aggregates, interparticle crosslinked aggregates, and the like) and can be in the form of fibers, sheets, films, foams, flakes and the like. The hydrogel-forming absorbent polymers can also comprise mixtures with low levels of one or more additives, such as for example powdered silica, zeolites, activated carbon, molecular sieves, surfactants, glue, binders, and the like. The components in this mixture can be physically and/or chemically associated in a form such that the hydrogel-forming polymer component and the non-hydrogel-forming polymer additive are not readily physically separable.
The hydrogel-forming absorbent polymers can be essentially non-porous (i.e., no internal porosity) or have substantial internal porosity.
For particles as described above, particle size is defined as the dimension determined by sieve size analysis. Thus, for example, a particle that is retained on a U.S.A. Standard Testing Sieve with 710 micron openings (e.g., No. 25 U.S. Series Alternate Sieve Designation) is considered to have a size greater than 710 microns; a particle that passes through a sieve with 710 micron openings and is retained on a sieve with 500 micron openings (e.g., No. 35 U.S, Series Alternate Sieve Designation) is considered to have a particle size between 500 and 710 μm; and a particle that passes through a sieve with 500 micron openings is considered to have a size less than 500 μm. The mass median particle size of a given sample of hydrogel-forming absorbent polymer particles is defined as the particle size that divides the sample in half on a mass basis, i.e., one-half of the sample by weight will have a particle size less than the mass median size and one-half of the sample will have a particle size greater than the mass median size. A standard particle-size plotting method (wherein the cumulative weight percent of the particle sample retained on or passed through a given sieve size opening is plotted versus sieve size opening on probability paper) is typically used to determine mass median particle size when the 50% mass value does not correspond to the size opening of a U.S.A. Standard Testing Sieve. These methods for determining particle sizes of the hydrogel-forming absorbent polymer particles are further described in U.S. Pat. No. 5,061,259 (Goldman et al.), issued Oct. 29, 1991, which is incorporated by reference.
For particles of hydrogel-forming absorbent polymers useful in the present invention, the particles will generally range in size from about 1 to about 2000 μm, more preferably from about 20 to about 1000 μm. The mass median particle size will generally be from about 20 to about 1500 μm, more preferably from about 50 μm to about 1000 μm, and even more preferably from about 100 to about 800 μm. For embodiments containing films, membranes, foam, fibers, or polymers coated on a substrate like a nonwoven, particles larger than the ones described above may be useful or even preferred.
In specific embodiments, other properties of the absorbent polymer may also be relevant. In such embodiments, the materials may have one or more of the properties described by U.S. Pat. No. 5,562,646, issued Oct. 8, 1996 to Goldman et al. and U.S. Pat. No. 5,599,335, issued Feb. 4, 1997 to Goldman et al., the disclosure of each of which is incorporated by reference herein.
The basic hydrogel-forming absorbent polymer can be formed in any conventional manner. Typical and preferred processes for producing these polymers are described in U.S. Reissue Pat. No. 32,649 (Brandt et al.), issued Apr. 19, 1988, U.S. Pat. No. 4,666,983 (Tsubakimoto et al.), issued May 19, 1987, and U.S. Pat. No. 4,625,001 (Tsubakimoto et al.), issued Nov. 25, 1986, all of which are incorporated by reference.
Preferred methods for forming the basic hydrogel-forming absorbent polymer are those involving aqueous solution or other solution polymerization methods. As described in the above-referenced U.S. Pat. No. Reissue 32,649, aqueous solution polymerization involves the use of an aqueous reaction mixture to carry out polymerization. The aqueous reaction mixture is then subjected to polymerization conditions that are sufficient to produce in the mixture, substantially water-insoluble, slightly network crosslinked polymer. The mass of polymer formed can then be pulverized or chopped to form individual particles.
More specifically, the aqueous solution polymerization method for producing the hydrogel-forming absorbent polymer comprises the preparation of an aqueous reaction mixture in which to carry out the polymerization. One element of such a reaction mixture is the acid group-containing monomer that will form the “backbone” of the hydrogel-forming absorbent polymer to be produced. The reaction mixture will generally comprise about 100 parts by weight of the monomer. Another component of the aqueous reaction mixture comprises a network crosslinking agent. Network crosslinking agents useful in forming the hydrogel-forming absorbent polymer according to the present invention are described in more detail in the above-referenced U.S. Reissue Pat. No. 32,649, U.S. Pat. No. 4,666,983, and U.S. Pat. No. 4,625,001. The network crosslinking agent will generally be present in the aqueous reaction mixture in an amount of from about 0.001 mole percent to about 5 mole percent based on the total moles of monomer present in the aqueous mixture (about 0.01 to about 20 parts by weight, based on 100 parts by weight of the monomer). An optional component of the aqueous reaction mixture comprises a free radical initiator including, for example, peroxygen compounds such as sodium, potassium, and ammonium persulfates, caprylyl peroxide, benzoyl peroxide, hydrogen peroxide, cumene hydroperoxides, tertiary butyl diperphthalate, tertiary butyl perbenzoate, sodium peracetate, sodium percarbonate, and the like. Other optional components of the aqueous reaction mixture comprise the various non-acidic co-monomers, including esters of the essential unsaturated acidic functional group-containing monomers or other co-monomers containing no carboxylic or sulfonic acid functionalities.
The aqueous reaction mixture is subjected to polymerization conditions that are sufficient to produce in the mixture substantially water-insoluble, but water-swellable, hydrogel-forming absorbent slightly network crosslinked polymers. The polymerization conditions are also discussed in more detail in the three above-referenced patents. Such polymerization conditions generally involve heating (thermal activation techniques) to a polymerization temperature from about 0° to about 100° C., more preferably from about 5° to about 40° C. Polymerization conditions under which the aqueous reaction mixture is maintained can also include, for example, subjecting the reaction mixture, or portions thereof, to any conventional form of polymerization activating irradiation. Radioactive, electronic, ultraviolet, and electromagnetic radiation are alternative conventional polymerization techniques.
The acid functional groups of the hydrogel-forming absorbent polymer formed in the aqueous reaction mixture are also preferably neutralized. Neutralization can be carried out in any conventional manner that results in at least about 25 mole percent, and more preferably at least about 50 mole percent, of the total monomer utilized to form the polymer being acid group-containing monomers that are neutralized with a salt-forming cation. Such salt-forming cations include, for example, alkali metals, ammonium, substituted ammonium and amines as discussed in further detail in the above-references U.S. Reissue Pat. No. 32,649.
While it is preferred that the particulate versions of hydrogel-forming absorbent polymer be manufactured using an aqueous solution polymerization process, it is also possible to carry out the polymerization process using multi-phase polymerization processing techniques such as inverse emulsion polymerization or inverse suspension polymerization procedures. In the inverse emulsion polymerization or inverse suspension polymerization procedures, the aqueous reaction mixture as described before is suspended in the form of tiny droplets in a matrix of a water-immiscible, inert organic solvent such as cyclohexane. The resultant particles of hydrogel-forming absorbent polymer are generally spherical in shape. Inverse suspension polymerization procedures are described in greater detail in U.S. Pat. No. 4,340,706 (Obaysashi et al.), issued Jul. 20, 1982, U.S. Pat. No. 4,506,052 (Flesher et al.), issued Mar. 19, 1985, and U.S. Pat. No. 4,735,987 (Morita et al.), issued Apr. 5, 1988, all of which are incorporated by reference.
Surface crosslinking of the initially formed polymers is a preferred process for obtaining hydrogel-forming absorbent polymers having relatively high porosity hydrogel-layer (“PHL”), performance under pressure (“PUP”) capacity and saline flow conductivity (“SFC”) values, which may be beneficial in the context of the present invention. Suitable general methods for carrying out surface crosslinking of hydrogel-forming absorbent polymers according to the present invention are disclosed in U.S. Pat. No. 4,541,871 (Obayashi), issued Sep. 17, 1985; published PCT application WO92/16565 (Stanley), published Oct. 1, 1992, published PCT application WO90/08789 (Tai), published Aug. 9, 1990; published PCT application WO93/05080 (Stanley), published Mar. 18, 1993; U.S. Pat. No. 4,824,901 (Alexander), issued Apr. 25, 1989; U.S. Pat. No. 4,789,861 (Johnson), issued Jan. 17, 1989; U.S. Pat. No. 4,587,308 (Makita), issued May 6, 1986; U.S. Pat. No. 4,734,478 (Tsubakimoto), issued Mar. 29, 1988; U.S. Pat. No. 5,164,459 (Kimura et al.), issued Nov. 17, 1992; published German patent application 4,020,780 (Dahmen), published Aug. 29, 1991; and published European patent application 509,708 (Gartner), published Oct. 21, 1992; all of which are incorporated by reference. See also, U.S. Pat. No. 5,562,646 (Goldman et al.), issued Oct. 8, 1996 and U.S. Pat. No. 5,599,335 (Goldman et al.), issued Feb. 4, 1997, herein incorporated by reference.
For some embodiments of the present invention, it is advantageous if the hydrogel-forming absorbent polymer particles prepared according to the present invention are typically substantially dry. The term “substantially dry” is used herein to mean that the particles have a liquid content, typically water or other solution content, less than about 50%, preferably less than about 20%, more preferably less than about 10%, by weight of the particles. In general, the liquid content of the hydrogel-forming absorbent polymer particles is in the range of from about 0.01% to about 5% by weight of the particles. The individual particles can be dried by any conventional method such as by heating. Alternatively, when the particles are formed using an aqueous reaction mixture, water can be removed from the reaction mixture by azeotropic distillation. The polymer-containing aqueous reaction mixture can also be treated with a dewatering solvent such as methanol. Combinations of these drying procedures can also be used. The dewatered mass of polymer can then be chopped or pulverized to form substantially dry particles of the hydrogel-forming absorbent polymer.
Other Gelling Polymers
Gels based on acrylamide are also suitable for use in the present invention. Specifically suitable are acrylamide, 2-(acryloyloxyl)ethyl acid phosphate, 2-acyrlamido-2-methylpropanesulfonic acid, 2-dimethylaminoethyl acrylate, 2,2′-bis(acrylamido)acetic acid, 3-(methacrylamido)propyltrimethylammonium chloride, acrylamidomethylpropanedimethylammonium chloride, acrylate, acrylonitrile, acrylic acid, diallyldimethylammonium chloride, diallylammonium chloride, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, ethylene glycol, dimethacrylate, ethylene glycol monomethacrylate, methacrylamide, methylacrylamidopropyltrimethylammonium chloride, N,N-dimethylacrylamide, N-[2[[5-(dimethylamino)1-naphthaleny]sulfonyl]amino[ethyl]-2-acrylamide, N-[3-dimehtylamino)propyl]acrylamide hydrochloride, N-[3-(dimethylamino)propyl)methacrylarnide hydrochloride, poly(diallyldimethylammonium chloride), sodium 2-(2-carboxybenzoyloxy)ethyl methacrylate, sodium acrylate, sodium allyl acetate, sodium methacrylate, sodium styrene sulfonate, sodium vinylacetate, triallylamine, trimethyl(N-acryloyl-3-aminopropyl)ammonium chloride, triphenylmethane-leuco derivatives, vinyl-terminated polymethylsiloxane, N-(2-ethoxyethyl)acrylamide, N-3-(methoxypropyl)acrylamide, N-(3-ethoxypropyl)acrylamide, N-cyclopropylacrylamide, N-n-propylacrylamide, and N-ethoxypropyl)acrylamide,
Also suitable are the gels based on N-isopropylacrylamide. These can include N-isopropylacrylamide, 2-(diethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl methacrylate, 2-acrylamido-2-methyl-1-propanesulfonacrylate, acrylic acid, acrylamide alkyl methacrylate, bis(4-dimethylamino)phenyl)(4-vinylphenyl)methyl leucocyanide, Concanavalin A (Lecithin), hexyl methacrylate, lauryl methacrylate, methacrylic acid, methacrylamidopropyltrimethylammonium chloride, n-butyl methacrylate, poly(tetrafluoroethylene), polytetramethylene ether glycol, sodium acrylate, sodium methacrylate, sodium vinyl sulfonate, and vinyl-terminated polymethylsiloxane.
Also suitable are the gels based on N,N′-diethylacrylamide. These can include N,N′-diethylacrylamide, methyacrylamidopropyltrimethylammonium chloride, N-acryloxysuccinimide ester, N-tert-butylacrylamide, and sodium methacrylate.
Gels based on acrylate are also suitable. These may include 2-dimethylaminoethyl acrylate, 2-acrylamido-2-methylpropanesulfonic acid, acrylamide, triallylamine, acrylate, acrylamide, methyl methacrylate, divinylbenzene, N,N-dimehtylaminoethyl methacrylate, poly(oxytetramethylene dimethacrylate), poly(2-hydroxyethyl methacrylate), poly(2-hydroxypropyl methacrylate), and polyethylene glycol methacrylate.
Also suitable are the gels based on various monomers. These can include acrylic acid, methacrylamidopropyltrimethylammonium chloride, Collagen, dipalmitoylphosphatidylethanolamine, poly[4-6-decadiene-1,10-diolbis(n-butoxycarbonylmethyl urethane)], poly[bis[aminoethoxy)ethoxy]phosphazene], poly[bis[(butoxyethoxy)ethoxy]phosphazene], poly[bis[ethoxyethoxy)ethoxy]phosphazene], poly[bis[methoxyethoxy)ethoxy]phosphazene], poly[bis[methoxyethoxy)phosphazene], polydimethylsiloxane, polyethylene oxide, poly(ethylene-dimethylsiloxane-ethylene oxide), poly(N-acrylopyrrolidine), poly[n,n-dimethyl-N-[(methacryloyloxyethyl]-N-(3-sulfopropyl)ammonium betaine], polymethacrylic acid, polymethacryloyl dipeptide, polyvinyl alcohol, polyvinyl alcohol-vinyl acetate, polyvinyl methyl ether, furan-modified poly(n-acetylethylene imine), and malein imide-modified poly(n-acetylethylene imine).
Also suitable as hydrogels are hydrogels that comprise a monomer selected from the group consisting of: include hydroxyalkyl acrylates, hydroxyalkyl methacrylates, N-substituted acrylamides, N-substituted methacrylamides, N-vinyl-2-pyrrolidone, N-acroylpyrrolidone, acrylics, methacrylics, vinyl acetate, acrylonitrile, styrene, acrylic acid, methacrylic acid, crotonic acid, sodium styrene sulfonate, sodium 2-sulfoxyethyl methacrylate, 2-acrylamido-2-methylpropanesulfonic acid, vinylpyridine, aminoethyl methacrylates, 2-methacryloyloxytrimethylammonium chloride, N,N′-methylenebisacrylamide, poly(ethylene glycol) dimethacrylate, 2,2′-(p-phenylenedioxy diethyl dimethacrylate, divinylbenzene and triallylamine.
Also suitable are the gels disclosed in U.S. Pat. Nos. 4,555,344, 4,828,710, and European Application EP 648,521 A2 (all of which are herein incorporated by reference).
High Surface Area Materials
In addition to the osmotic absorbent (for example, hydrogel-forming absorbent polymers), the present invention can comprise a high surface area material. It is this high surface area material that provides, either itself or in combination with the hydrogel-forming absorbent polymer, the separation apparatus or vessel with high capillary sorption absorbent capacity. As discussed herein, high surface area materials are described, in one regard, in terms of their capillary sorption absorbent capacity (measured without hydrogel-forming polymer or any other optional material contained in the separation apparatus or vessel). It is recognized that materials having high surface areas may have uptake capacities at very high suction heights (e.g., 100 cm or higher). This allows the high surface area materials to provide one or both of the following functions: i) a capillary pathway of liquid to the osmotic absorbents, and/or ii) additional absorbent capacity. Thus, while the high surface area materials may be described in terms of their surface area per weight or volume, applicants herein alternatively use capillary sorption absorbent capacity to describe the high surface area material because capillary sorption absorbent capacity is a performance parameter that generally will provide the separation apparatus or vessel used in the present invention with the requisite suction capabilities to provide improved absorbent articles. It will be recognized that certain high surface area materials, e.g. glass microfibers, will themselves not exhibit particularly high capillary sorption absorbent capacity at all heights, especially very high heights (e.g., 100 cm and higher). Nonetheless, such materials may provide the desired capillary pathway of liquid to the hydrogel-forming absorbent polymer or other osmotic absorbent to provide the requisite capillary sorption absorbent capacities, even at relatively high heights, when combined with the hydrogel-forming polymer or other osmotic absorbent.
Any material having sufficient capillary sorption absorbent capacity when used in combination with the hydrogel-forming absorbent polymer or other osmotic absorbent will be useful in the separation apparatus or vessel of the present invention. In this regard, the term “high surface area material” refers to any material that itself (i.e., as measured without the osmotic absorbent or any other optional material that is contained in the separation apparatus or vessel) exhibits one or more of the following capillary sorption absorbent capacities: (I) A capillary sorption absorbent capacity of at least about 2 g/g at a suction height of 100 cm, preferably at least about 3 g/g, still more preferably at least about 4 g/g, and still more preferably at least about 6 g/g, at a height of 100 cm; (II) A capillary sorption absorbent capacity at a height of 35 cm of at least about 5 g/g, preferably at least about 8 g/g, more preferably at least about 12 g/g; (III) A capillary sorption absorbent capacity at a height of 50 cm of at least about 4 g/g, preferably at least about 7 g/g, more preferably at least about 9 g/g; (IV) A capillary sorption absorbent capacity at a height of 140 cm of at least about 1 g/g, preferably at least about 2 g/g, more preferably at least about 3 g/g, still more preferably at least about 5 g/g; or (V) A capillary sorption absorbent capacity at a height of 200 cm of at least about 1 g/g, preferably at least about 2 g/g, more preferably at least about 3 g/g, still more preferably at least about 5 g/g.
In one embodiment, the high surface area material will be fibrous (hereafter referred to as “high surface area fibers”) in character, so as to provide a fibrous web or fibrous matrix when combined with the hydrogel-forming absorbent polymer or other osmotic absorbent. Alternatively, the high surface area material will be an open-celled, hydrophilic polymeric foam (hereafter referred to as “high surface area polymeric foams” or more generally as “polymeric foams”). These materials are described in detail below.
High surface area fibers useful in the present invention include those that are naturally occurring (modified or unmodified), as well as synthetically made fibers. The high surface area fibers have surface areas much greater than fibers typically used in absorbent articles, such as wood pulp fibers. The high surface area fibers used in the present invention will desirably be hydrophilic. As used herein, the term “hydrophilic” describes fibers, or surfaces of fibers, that are wettable by aqueous liquids (e.g., aqueous body liquids) deposited on these fibers. Hydrophilicity and wettability are typically defined in terms of contact angle and the surface tension of the liquids and solids involved. This is discussed in detail in the American Chemical Society publication entitled Contact Angle, Wettability and Adhesion, edited by Robert F. Gould (Copyright 1964). A fiber, or surface of a fiber, is said to be wetted by a liquid (i.e., hydrophilic) when either the contact angle between the liquid and the fiber, or its surface, is less than 90 degrees, or when the liquid tends to spread spontaneously across the surface of the fiber, both conditions normally co-existing. Conversely, a fiber or surface is considered to be hydrophobic if the contact angle is greater than 90 degrees and the liquid does not spread spontaneously across the surface of the fiber. The hydrophilic character of the fibers useful herein may be inherent in the fibers, or the fibers may be naturally hydrophobic fibers that are treated to render them hydrophilic. Materials and methods for providing hydrophilic character to naturally hydrophobic fibers are well known.
High surface area fibers useful herein will have capillary suction specific surface areas in the same range as the polymeric foams described below. Typically, however, high surface area fibers are characterized in terms of BET surface area.
High surface area fibers useful herein include glass microfibers such as, for example, glass wool available from Evanite Fiber Corp. (Corvallis, Oreg.). Glass microfibers useful herein will typically have fiber diameters of not more than about 0.8 μm, more typically from about 0.1 μm to about 0.7 μm. These microfibers will have surface areas of at least about 2 m2/g, preferably at least about 3 m2/g. Typically, the surface area of glass microfibers will be from about 2 m2/g to about 15 m2/g. Representative glass microfibers for use herein are those available from Evanite Fiber Corp. as type 104 glass fibers, which have a nominal fiber diameter of about 0.5 μm. These glass microfibers have a calculated surface area of about 3.1 m2/g.
Another type of high surface area fibers useful herein are fibrillated cellulose acetate fibers. These fibers (referred to herein as “fibrets”) have high surface areas relative to cellulose-derived fibers commonly employed in the absorbent article art. Such fibrets have regions of very small diameters, such that their particle size width is typically from about 0.5 to about 5 μm. These fibrets typically have a surface area of about 20 m2/g. Representative fibrets useful as the high surface area materials herein are available from Hoechst Celanese Corp. (Charlotte, N.C.) as cellulose acetate Fibrets®. For a detailed discussion of fibrets, including their physical properties and methods for their preparation, see “Cellulose Acetate Fibrets: A Fibrillated Pulp With High Surface Area”, Smith, J. E., Tappi Journal, December 1988, p. 237; and U.S. Pat. No. 5,486,410 (Groeger et al.) issued Jan. 23, 1996; the disclosure of each of which is incorporated by reference herein.
In addition to these fibers, the skilled artisan will recognize that other fibers well known in the absorbency art may be modified to provide high surface area fibers for use herein. Representative fibers that may be modified to achieve high surface areas required by the present invention are disclosed in U.S. Pat. No. 5,599,335, supra (see especially columns 21-24), incorporated herein by reference.
Regardless of the nature of the high surface area fibers utilized, the fibers and the osmotic absorbent will be discrete materials prior to combination. As used herein, the term “discrete” means that the high surface area fibers and the osmotic absorbents are each formed prior to being combined to form the core of the separation apparatus or vessel. In other words, the high surface area fibers are not formed subsequent to mixing with the osmotic absorbent (e.g., hydrogel-forming absorbent polymer), nor is the osmotic absorbent formed after combination with the high surface area fibers. Combining of the discrete respective components ensures that the high surface area fibers will have the desired morphology and, more importantly, the desired surface area.
Spacers
Spacer materials may be used in the absorbent materials of the present invention. Spacer materials suitable for use in the present invention include any fibrous or particulate material that is, at most, only slightly soluble in water and/or lipophilic fluid. The spacer can be dispersed throughout a matrix of absorbent material in order to improve its permeability above that of a matrix made up of an absorbent material alone; or, the spacer can be used to maintain permeability even after the absorbent material swells and /or gels upon exposure to water. Therefore, the spacer helps reduce the pressure drop across an absorbent material matrix when a water-bearing fluid is passed through the matrix. In addition, if the absorbent material is prone to congealing after exposure to water and subsequent collapse, the spacer can aid in the reduction or prevention of gel congealing upon collapse.
Non-limiting examples of suitable spacer materials include sand, silica, aluminosilicates, glass microspheres, clay, layered silicates, wood, natural textile materials, synthetic textile materials, alumina, aluminum oxide, aluminum silicate, zinc oxide, molecular sieves, zeolites, activated carbon, diatomaceous earth, hydrated silica, mica, microcrystalline cellulose, montmorillonite, peach pit powder, pecan shell powder, talc, tin oxide, titanium dioxide, walnut shell powder, and particles of different metals or metal alloys. Also useful are particles made from mixed polymers (e.g., copolymers, terpolymers, etc.), such as polyethylene/polypropylene copolymer, polyethylene/propylene/isobutylene copolymer, polyethylene/styrene copolymer, and the like.
Other particulate materials useful herein are the synthetic polymeric particles selected from the group consisting of polybutylene, polyethylene, polyisobutylene, polymethylstyrene, polypropylene, polystyrene, polyurethane, nylon, teflon, and mixtures thereof. Of these, the most preferred are polyethylene and polypropylene particles, with the oxidized versions of these materials being especially preferred. Examples of commercially available particles useful herein include the ACumis™ micronized polyethylene waxes available from Allied Signal (Morristown, N.J.) available as the A, B, C, and D series in a variety of average particle sizes ranging from 5 microns to 60 microns. Preferred are the ACumis™ A-25, A-30, and A-45 oxidized polyethylene particles having a means particle size of 25, 30, and 45 microns, respectively. Examples of commercially available polypropylene particles include the Propyltex series available from Micro Powders (Dartek) and ACuscrub™ 51, available from Allied Signal (Morristown, N.J.) having a mean particle size of about 125 microns.
Absorbent Matrix
In order to increase the “dry” absorbent matrix permeability or maintain the permeability of the absorbent matrix when it is wet, it is important to provide a sufficient absorbent material to spacer, and, optionally, high surface area material ratio. Since the weight of possible spacers can vary greatly with respect to the weight of the absorbent material, the proportion must be quantified on a “dry” volumetric basis. “Net matrix volume” is the volume of the absorbent materials, spacers, and, optionally, any high surface area materials not including any inter-material volume the materials themselves may contain or any volume attributable to intra-material void spaces. “Intra-material void volume” is the cumulative volume of voids between material particles and/or fibers that typically and naturally occurs when particles and/or fibers occupy a given space. “Dry bulk matrix volume” is equal to the net matrix volume combined with the intra-material void volume on a dry basis. With respect to the present invention, it is preferred that the absorbent material is from 50 to 100%, more preferably from 75 to 95%, of the dry bulk matrix volume. It is preferred that the spacer is from 1 to 50%, more preferably from 5 to 25%, of the dry bulk matrix volume. It is preferred that the optional high surface area material be from 1 to 50%, more preferably from 5 to 25%, of the dry bulk matrix volume.
The gel materials, spacers, and, optionally, the high surface area materials can be formed into fibrous structures, woven or non-woven, such as sheets or films or membranes and configured in different ways. The sheet configuration is application-dependent and generally includes four generic configurations, namely, tubes, hollow fibers, plate and frame units, and spiral wound modules, all of which are within the scope of the present invention.
The loading density of water absorbing agent on such fibrous structures of the present invention may be in the range of from about 50 g of agent/m2 of fibrous structure to about 2000 g of agent/m2 of fibrous structure.
Tubes are, perhaps, the simplest configuration, in which the sheet is cast on the inside wall of a porous support tube. The tube configuration, however, can be cost-prohibitive with the porous support tube itself being the dominant cost factor.
Hollow fibers are, in theory, the ideal sheet configuration in that there is no “parasite” drag and no expensive porous support tube. Such fibers can be pressurized on the inside permitting “thin channel” fluid management of the water-bearing fluid. However, the biggest disadvantage of hollow fibers is the pressure constraint, which limits the cross-flow velocity down the lumen of the fiber. In addition, the hollow fiber configuration is more susceptible to fouling and plugging than the other three configurations; however, larger diameter fibers are becoming popular to improve fouling resistance. Fortunately, hollow fibers can be readily cleaned by back washing, which tends to compensate for their propensity to foul. In contrast, it is not recommended that tubes; plate and frame units; and spiral wound modules be back-washed, due to problems with membrane delamination and glue line seal rupture.
Flat sheets in a plate and frame unit offer the greatest versatility; they are also the most cost-prohibitive.
While spiral wound modules were originally developed for reverse osmosis; they are capturing an increased share of the ultrafiltration market by providing one of the least expensive ultrafiltration modules available in terms of cost per sheet area unit. Spiral wound units cannot be unwrapped for cleaning and most cannot be autoclaved. In terms of propensity to fouling, they are between hollow fibers and tubes (as well as the pricier plate and frame units).
The gel material can also be directly deposited onto a fibrous structure or a spacer material. This can be achieved by first applying the aqueous solution of a monomer containing from 10 to 100% of a water-soluble unsaturated monomer onto a fibrous structure or a spacer material and then polymerizing said monomer.
The thickness of the fibrous structure is generally in the range of from 0.01 to 10 mm, preferably 0.1 to 5 mm. The non-woven fabric is desired to have a basis weight in the range of from 5 to 1000 g/sq. m, preferably from 10 to 300 g/sq. m.
Consumable in the Container
The consumable in the container can be any suitable consumable composition. The consumable typically is a fluid, such as a lipophilic fluid, a detergent, oil, or the like. In one embodiment, the consumable is a fluid comprising fabric care or fabric treating agents, such as surfactants, perfumes, brighteners, finishing agents, water, and the like that are suitable for use with a lipophilic fluid-based fabric treating process.
“Lipophilic fluid” as used herein means any liquid or mixture of liquid that is inmmiscible with water at up to 20% by weight of water. In general, a suitable lipophilic fluid can be fully liquid at ambient temperature and pressure, can be an easily melted solid, e.g., one that becomes liquid at temperatures in the range from about 0° C. to about 60° C., or can comprise a mixture of liquid and vapor phases at ambient temperatures and pressures, e.g., at 25° C. and 1 atm. pressure.
The suitable lipophilic fluid may be non-flammable or, have relatively high flash points and/or low VOC characteristics, these terms having conventional meanings as used in the dry cleaning industry, to equal to or exceed the characteristics of known conventional dry cleaning fluids.
Non-limiting examples of suitable lipophilic fluid materials include siloxanes, other silicones, hydrocarbons, glycol ethers, glycerine derivatives such as glycerine ethers, perfluorinated amines, perfluorinated and hydrofluoroether solvents, low-volatility nonfluorinated organic solvents, diol solvents, other environmentally-friendly solvents and mixtures thereof.
“Siloxane” as used herein means silicone fluids that are non-polar and insoluble in water or lower alcohols. Linear siloxanes (see for example U.S. Pat. Nos. 5,443,747, and 5,977,040) and cyclic siloxanes are useful herein, including the cyclic siloxanes selected from the group consisting of octamethyl-cyclotetrasiloxane (tetramer), dodecamethyl-cyclohexasiloxane (hexamer), decamethyl-cyclopentasiloxane (pentamer, commonly referred to as “D5”) and mixtures thereof. A suitable siloxane comprises more than about 50% cyclic siloxane pentamer, or more than about 75% cyclic siloxane pentamer, or at least about 90% of the cyclic siloxane pentamer. Also suitable for use herein are siloxanes that are a mixture of cyclic siloxanes having at least about 90% (or at least about 95%) pentamer and less than about 10% (or less than about 5%) tetramer and/or hexamer.
The lipophilic fluid can include any fraction of dry-cleaning solvents, especially newer types including fluorinated solvents, or perfluorinated amines. Some perfluorinated amines such as perfluorotributylamines, while unsuitable for use as lipophilic fluid, may be present as one of many possible adjuncts present in the lipophilic fluid-containing composition.
Other suitable lipophilic fluids include, but are not limited to, diol solvent systems e.g., higher diols such as C6 or C8 or higher diols, organosilicone solvents including both cyclic and acyclic types, and the like, and mixtures thereof.
The container may comprise a consumable container outlet adapted to releasably engage an apparatus' container receiving port such that when engaged, the consumable is in fluid communication with the apparatus' fluid handling system.
Further, the container may comprise a filter component inlet and outlet adapted to releasably engage an apparatus' container receiving port such that when engaged, the filter component is in fluid communication with the apparatus' fluid handling system.
Apparatus
The container and apparatus disclosed herein may be used in a service, such as a dry cleaning service, diaper service, uniform cleaning service, or commercial business, such as a Laundromat, dry cleaner, linen service which is part of a hotel, restaurant, convention center, airport, cruise ship, port facility, casino, or may be used in the home.
The apparatus can be a modified existing laundry apparatus and is retrofitted to have a consumable handling system and a container receiving port for receiving the container of the present invention, specifically, the port is configured to releasably engage the housing of the container. The apparatus can be one specifically built in such a manner so as to have the consumable handling system and a container receiving port, which are configured as described herein.
The apparatus can be a “dual mode” apparatus, which is one capable of both washing and drying fabrics within the same drum. An apparatus may contain some type of control system. These include electrical systems, such as, the so-called smart control systems, as well as more traditional electro-mechanical systems. The control systems would enable the user to select the size of the fabric load to be cleaned, the type of soiling, the extent of the soiling, the time for the cleaning cycle. Alternatively, the user could use pre-set cleaning and/or refreshing cycles, or the apparatus could control the length of the cycle, based on any number of ascertainable parameters. This would be especially true for electrical control systems. For example, when the collection rate of lipophilic fluid reaches a steady rate the apparatus could turn its self off after a fixed period of time, or initiate another process for the lipophilic fluid.
In the case of electrical control systems, one option is to make the control device a so-called “smart device”. This could mean including, but not limited to, self diagnostic system, load type and cycle selection, linking the machine to the Internet and allowing for the consumer to start the apparatus remotely, be informed when the apparatus has cleaned a fabric article, or for the supplier to remotely diagnose problems if the apparatus should break down. Furthermore, the system can be only a part of a cleaning system (i.e., a “smart system”), in which the system communicates with the other cleaning devices which would be used to complete the remainder of the cleaning process, such as a washing machine, and a dryer.
This application is a continuation-in-part of prior copending U.S. application Ser. No. 10/238,272, filed on Sep. 10, 2002; which claims priority under 35 USC 119(e) to U.S. Provisional Application Ser. No. 60/318,437 filed Sep. 10, 2001; and of prior copending U.S. application Ser. No. 10/238,009, filed on Sep. 9, 2002; which claims priority under 35 USC 119(e) to U.S. Provisional Application Ser. No. 60/318,440 filed on Sep. 10, 2001.
Number | Date | Country | |
---|---|---|---|
60318437 | Sep 2001 | US | |
60318440 | Sep 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10238272 | Sep 2002 | US |
Child | 10991777 | Nov 2004 | US |
Parent | 10238009 | Sep 2002 | US |
Child | 10991777 | Nov 2004 | US |