The present invention relates to micro-fluid applications, such as inkjet printing. The invention relates particularly to detecting fluid levels in supply items consumed in such applications. Capacitive sensing facilitates certain designs.
The art of printing images with micro-fluid technology is relatively well known. A disposable or (semi)permanent ejection head has access to a local or remote supply of fluid (e.g., ink). The fluid ejects from an ejection zone to a print media in a pattern of pixels corresponding to images being printed.
Accurately knowing the amount of fluid available for use during printing lends itself to a variety of consumer features. Imaging devices can warn users of impending depletion of fluid. Users can re-supply fluid to prevent voiding warranties. Imaging can cease to avoid de-priming ejection heads, etc. Manufacturers have implemented a variety of fluid measurement sensors and techniques. Each has its own set of advantages and problems. Some are cheap while others are costly. Some work as intended while others have proven so poorly that users regularly ignore them. Still others are complex, including complicated processing algorithms. The optimum balance is to provide accurate fluid level measurement over a lifetime of a supply item, but without adding complexity or cost. Some of the more popular strategies in the art contemplate float sensors, magnetic sensors, torques sensors, optical sensors, valves, fluid drop-counting, electrical probes, capacitance determinations, or the like.
With capacitive style fluid detection, it is common to fashion two metal plates (electrodes) with spacing between them. Upon application of electrical energy, circuitry measures capacitance of the media (e.g., fluid) residing in the spacing. The amount of capacitance varies according to the amount of the media and level detection is made possible. The plates reside wholly within the fluid or external to a housing containing the fluid. Alternatively, one plate resides in the fluid while the other resides out of the fluid. Spacing between the plates, sizes and shapes of the plates and material selection are just some of the many design options. Pros and cons dictate the choices.
In any design, capacitance detection has inherent drawbacks making them dubious for micro-fluid applications. Variations during manufacturing are influential enough to prevent preciseness in measured capacitance levels. The most problematic variations include improperly distancing plates from one another, improperly orienting them relative to each other or arranging them wrongly on housing containers. Owing to common calibration schemes in devices using the plates, specific capacitance readings cannot be always associated with a specific ink level remaining in the supply item.
Also, capacitance readings correspond typically to a decrease in farads (F) as fluid levels between spaced plates become lower over time. Conversely, refilling fluid leads to higher capacitance readings. Plotting one variable relative to the other usually results in constantly sloped data in graphs, e.g.,
Accordingly, a need exists in the art to improve fluid level detection in supply items of imaging devices, especially when involving capacitance measurement techniques. The need extends not only to improving accuracy, but to translating capacitance readings into beneficial heights of fluid. Simplicity of design is still a further recognized need as is eliminating tolerance variability in manufacturing. Economic advantage is still another consideration. Additional benefits and alternatives are also sought when devising solutions.
The above-mentioned and other problems become solved with consumable supply items having capacitive fluid level detection for use in micro-fluid applications. The design focuses not on absolute capacitance values of fluids between plates, but instead on rate changes of capacitance that are noticeably abrupt. Various techniques facilitate the design.
A consumable supply item for an imaging device holds an initial or refillable volume of fluid. Its housing defines an interior having a pair of opposed electrodes. The electrodes define a capacitance that varies in response to an amount of liquid between the electrodes. A volume space filled by the liquid varies along a length of the electrodes. Abrupt changes in capacitance values are noticeable at each change in the volume space. Devices can accurately recalibrate fluid levels at these changes.
In one embodiment, electrode interior surfaces face one another. At least one electrode has an open region, such as a hole or a cutout of material. The electrode surface prevents the occupation of fluid, while the open region allows fluid to spill into other locations of the housing. Sharp changes of capacitance readings are noticed at transitions of fluid from and to the open region.
In another embodiment, a support material connects to each electrode. The support adds mechanical stability and creates a region preventing filling by the liquid. Capacitance values change drastically with fluid residing above the support or only below the support. The support can optionally flow fluid through its interior for still other outcomes in capacitance measurements.
In still other embodiments, a supply item has a shape that varies in cross section. At various heights, fluid fills an expansive section of housing while at other heights the fluid is restricted to filling a more narrow section. The electrodes are located to take capacitance readings that observe expansive and narrow transitions in fluid in the housing as the volume of fluid depletes in a direction of gravity toward a bottom of the housing.
Further embodiments contemplate material selection, construction, and modularity, to name a few. The housing can also include various ports, air venting, valves, filters, standpipes, fittings, or other structures useful in fluid mechanics.
These and other embodiments are set forth in the description below. Their advantages and features will be readily apparent to skilled artisans. The claims set forth particular limitations.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:
In the following detailed description, reference is made to the accompanying drawings where like numerals represent like details. The embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that other embodiments may be utilized and that process, electrical, and mechanical changes, etc., may be made without departing from the scope of the invention. The following detailed description is not to be taken in a limiting sense and the scope of the invention is defined only by the appended claims and their equivalents. In accordance with the features of the invention, methods and apparatus include consumable supply items having capacitive fluid level detection for micro-fluid applications, such as inkjet printing, medicinal delivery, forming circuit traces, misting water, etc.
With reference to
The housing is any of a variety of containers for holding fluid. Its material embodies glass, plastic, metal, etc. It can be recyclable or not. It can encompass simplicity or complexity. Techniques for producing the housing are variable as well. Blow molding, injection molding, etc. are envisioned. Welding, heat-staking, gluing, tooling, etc. are also envisioned. Selecting materials for the housing and designing the production, in addition to ascertaining conditions for shipping, storing, using, etc. the housing, includes focusing on further criteria, such as costs, ease of implementation, durability, leakage, and a host of other items.
The overall shape of the housing is varied. It is dictated by an amount of fluid to be retained and good engineering practices, such as contemplation of the larger imaging context in which the housing is used. In the design given, the housing is generally cylindrical or rectangular and sits vertically upright. It holds a volume of ink on the order of about 450 ml in a container defining a capacity of about 500 ml. It has a height of about 120 mm. In smaller designs having the same height, the ink volume is about 150 ml in a capacity of about 180-190 ml.
The walls of the housing have a thickness “t.” They are generally the same thickness everywhere about an entirety of the housing. They are sufficiently strong to maintain the shape of the housing throughout a lifetime of usage. They are rigid to preventing bowing, tilting and the like. They are not overly thick, however, that material is excessively wasted. The thickness ranges from about 1.5 to about 2.0 mm. The walls may be also formed as a unitary structure in a single instance of manufacturing or as pieces fitted together from individual parts. The latter envisions a modular construction.
In either the modular or integral design, the housing supports a pair of opposed electrodes 50, 52 (electrode 50 being shown in phantom in
Also, in a space between the electrodes, a volume 60 that can be filled with the amount of liquid varies along a length of the electrodes. The boundaries of the housing are fashioned in a manner to change abruptly so that changes in capacitance values of the fluid in this space correspondingly changes abruptly. The design facilitates known fluid level points enabling accurate recalibration of fluid level sensing at these changes. It resets the industry practice from examining absolute capacitance values to examining rate changes of capacitance that are noticeably abrupt.
In the present embodiment, the supply item 10 has a shape that varies in cross section within the volume space 60. At various heights above the bottom 18 of the housing, fluid fills either an expansive section 70 of housing or is restricted to only filling a more narrow section 72. As the fluid depletes downward with usage, fluid levels can be noted as having a large, upper surface area within the expansive section, such as at levels 80a, 82a, or levels having a small, upper surface area within the narrow section, such as 80b, 82b. The volume space allowing the expansion or restriction of fluid at these levels transitions abruptly in the housing interior at multiple positions along the electrodes, such as at positions 85.
To illustrate capacitance readings of the electrodes, reference is taken to
With reference to
With reference to
In a preferred design, the electrodes are tin plated steel. They have a thickness from foil thinness to that of a few millimeters. They are over-molded with a fine layer or coating of polypropylene or polyethylene. The coating ranges up to about 1.5 mm. Similarly too, the support material is formed of polypropylene or polyethylene. It is welded to inner surface areas 195 at joints 190. Alternatively, the support material is molded in place when over-molding the electrode pair with its coating.
The spacing Gap of the electrodes from one another defines a relative length of the support material. In one design, the gap ranges from about 4 to about 10 mm. The dimension transverse to the Gap ranges about 1 to about 5 mm. Similarly, the thickness 190 of the support material is 1 to about 5 mm. In an optional embodiment, one or more openings 210 can fluidly communicate through the thickness 190 of the support material to allow limited amounts of fluid to transition from regions 182 to 184. This provides still further outcomes in capacitance measurements. The opening can be of any shape. The height placement of the support 180 can be anywhere along the length of the electrode. Preferred heights exist at known milestones of fluid volume in the housing, e.g., one-half. A central location about midway between a top and a bottom of the electrodes is a preferred location, as shown.
In still other embodiments, electrode interior surfaces 195, 196 face one another,
In
Relatively apparent advantages of the many embodiments include, but are not limited to, more accurately measuring the level of fluid in a supply item than is otherwise available with traditional raw capacitive measurement techniques. Advantages also introduce notions of uniquely shaped housings and electrodes.
The foregoing illustrates various aspects of the invention. It is not intended to be exhaustive. Rather, it is chosen to provide the best illustration of the principles of the invention and its practical application to enable one of ordinary skill in the art to utilize the invention, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the invention as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
Number | Name | Date | Kind |
---|---|---|---|
3929071 | Cialone | Dec 1975 | A |
4201085 | Larson | May 1980 | A |
4415886 | Kyogoku | Nov 1983 | A |
4853718 | Elhatem | Aug 1989 | A |
5289211 | Morandotti et al. | Feb 1994 | A |
5635962 | Goldis | Jun 1997 | A |
5682184 | Stephany et al. | Oct 1997 | A |
5788388 | Cowger | Aug 1998 | A |
6431670 | Schantz et al. | Aug 2002 | B1 |
6641240 | Hsu et al. | Nov 2003 | B2 |
6670817 | Fournier et al. | Dec 2003 | B2 |
7029082 | Farr et al. | Apr 2006 | B2 |
7370528 | Scardovi | May 2008 | B2 |
7510257 | Jung | Mar 2009 | B2 |
7555231 | Etter | Jun 2009 | B2 |
Entry |
---|
O.W. Phillips, “Capacitive Ink Level Detector”, IBM Technical Disclosute Bulletin, vol. 16, No. 10, Mar. 1974, pp. 3293 and 3294. |
Number | Date | Country | |
---|---|---|---|
20120218356 A1 | Aug 2012 | US |