The present subject matter relates generally to pull-out drawers and more particularly to an anti-racking system for consumer appliance drawers.
Various types of consumer appliances are designed with pull-out compartment drawers. For example, a number of popular refrigerator styles have freezer compartments with one or more pull-out drawers that span the width of the appliance and include storage baskets or bins. Examples of these refrigerators include the Profile™ French door and Armoire style refrigerators from General Electric Appliances. The conventional pull-out drawers typically include side brackets that are mounted to slides of a slide mechanism that, in turn, has a base member mounted to the compartment liner.
Due to their substantial width, depth, and weight, the pull-out drawers are susceptible to misalignment between the sides when moving the drawer into and out of the appliance compartment, particularly if the door is grasped off-center and the pulling/closing force is applied non-parallel to the slide structure. This misalignment may lead to binding or “racking” of the drawer, which may make further movement of the drawer difficult and may also lead to an improper seal of the drawer in the closed position.
A known approach to minimize racking of the drawers is to synchronize the sliding movement of the opposite slide mechanisms with a gear and cross shaft assembly. A gear is provided at each side of the drawer that engages with a stationary gear rail as the drawer moves in and out of the freezer compartment. The gears are connected with a cross shaft that spans the width of the drawer. The shaft synchronizes movement of the respective gears along the gear rail, which is imparted to the slide mechanisms. Thus, any off-center pulling/pushing force on the drawer handle is compensated for through the shaft and gears.
Although the shaft and gear assembly discussed above is beneficial in minimizing the occurrence of racking, location of the shaft is problematic in that it reduces the usable volume of the compartment for features such as bins, baskets, ice buckets, and so forth, especially when such devices are suspended above or below the drawer in a freezer compartment.
Accordingly, it would be desirable to provide an anti-racking system for pull-out drawers that includes the benefits of the shaft and gear assembly discussed above without sacrificing usable volume of the compartment.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In an exemplary embodiment, a consumer appliance, for example a refrigeration appliance, is provided with a compartment having a pull-out drawer. The appliance may be a refrigerator having a freezer compartment with one or more pull-out drawers. The pull-out drawer includes a slide bracket mounted to respective slide members configured on each opposite side of the compartment for movement of the pull-out drawer into and out of the compartment. A gear rail is configured on each opposite side of the compartment generally adjacent to the slide member. A gear assembly is mounted for movement with each slide bracket, with each gear assembly having a first gear engaged with the gear rail and a pinion gear engaged with the first gear. The pinion gear has a rotational axis that is vertically displaced from a rotational axis of the first gear. A cross bar is connected between opposite pinion gears. In this manner, a driving force generated at one gear assembly from an off-center pulling force on the drawer is transmitted through the cross bar to the opposite gear assembly.
In still a further embodiment in accordance with aspects of the invention, a refrigeration appliance is provided with a freezer compartment having an upper pull-out drawer and a lower pull-out drawer. The lower pull-out drawer includes a slide member configured on each opposite side of the freezer compartment and the pull-out drawer includes a slide bracket mounted to each respective slide member for movement of the pull-out drawer into and out of the freezer compartment. A gear rail is configured on each opposite side of the freezer compartment generally adjacent to the slide members. A gear assembly is mounted for movement with each slide bracket, with each gear assembly having a first gear engaged with the gear rail and a pinion gear engaged with the first gear. The pinion gear has a rotational axis that is vertically displaced from a rotational axis of the first gear, with a cross bar connected between the pinion gears. In this manner, a driving force generated at one gear assembly from an off-center pulling force on the lower pull-out drawer is transmitted through the cross bar to the opposite gear assembly. The vertical displacement of the pinion gears and cross bar provides for more efficient use of the compartment space. For example, in a particular embodiment, an ice bucket is disposed in the lower pull-out drawer to receive ice from an icemaker in the upper pull-out drawer. Location of the cross bar permits the ice bucket to have a depth within the lower pull-out drawer so as to extend above and rearward of the crossbar.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Although described herein with reference to pull-out freezer compartment drawers, it should be appreciated that drawers in accordance with aspects of the invention are not limited in this manner and may have utility within the fresh-food compartment 14, or in any other compartment of a consumer appliance.
Each drawer 18, 22 includes a handle 24 mounted to a front panel 26 whereby the drawer is moved into and out of the compartment 18 by a consumer grasping and pulling or pushing on the handle 24. As discussed above, an off-center pull/push force can result in racking of the drawer 18, 22 relative to the casing 12, particularly for the heavier lower drawer 22.
Referring to
A gear assembly 36 is mounted to each of the slide brackets 30. The gear assembly 36 includes a first gear 38 that is geared engagement with the gear rail 34 so as to rotate as the front panel 26 (and attached slide brackets 32) of the drawer 22 is moved into and out of the compartment 18. Referring to
A crossbar 42 is connected between the respective pinion gears 40. For example, in the embodiment illustrated in the figures, the crossbar 42 has a multi-sided cross-sectional profile that engages in a keyed hub 46 that is defined in an axial extension 44 of each pinion gear 40. With this particular configuration, a non-centered force that is generated at one of the gear assemblies 36 from an off-center pulling or pushing force on the drawer 22 is transmitted through the crossbar 42 to the opposite gear assembly 36 such that the imbalance is “equalized” and the likelihood of the drawer racking or binding in the compartment 18 is significantly reduced.
The slide brackets 32 may be attached to the inside of the drawer front panel 26 and are attached to the slide member or members 30 (directly or indirectly) by any suitable mechanical attachment, such as a snap fit, fasteners, rivets, and so forth. The gear assembly 36 is stationarily mounted relative to the slide bracket 32. In the illustrated embodiment, a bracket or brace 48 (
Referring to
While described and illustrated in the exemplary context of a refrigerator drawer, it should be appreciated that the drawer assemblies described herein are not necessarily limited to use in any particular type of refrigerator, and may also have utility in a wide variety of appliances or other products. All such uses are within the scope and spirit of the invention.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.