The invention concerns contact carrier for receiving electrical contact elements.
Contact carriers of this type are required in order to receive electrical contact elements, to install in a plug connector, housing or other electrical device and to electrically shield said electrical contact elements against said plug connector, housing or other electrical device. The electrical contact element is connected to a cable or a lead and is subsequently received in the contact carrier. The contact carrier ensures that the electrical contact element is completely electrically insulated with respect to the device in which said contact element is received.
It is thus possible by means of the contact carrier for the electrical contact to be reliably installed. Accordingly, contact carriers of this type comprise holding devices that render it possible to mechanically fix the contact carrier in a plug connector, housing or other device. It is thus possible for one or multiple contact carriers of this type to be received for example in a plug connector. It is not necessary for the plug connector itself to comprise an electrically insulating housing. Expediently, contact carriers for this purpose are produced from an electrically insulating material, for example a polymer.
Contact carriers that receive only one electrical contact are customary particularly in the field of high current contacts. As a result of the construction size, weight and the associated bulkiness of the contacts, it is possible to provide said contacts individually with a contact carrier and to install said contact in a plug connector, housing or other electrical device.
In order to fix a high current contact of this type in a contact carrier, hitherto usually a two-part contact carrier is used. The base body is usually configured in a cylindrical manner and is provided so as to receive the electrical contact. A closure is provided in order to ensure the electrical contact is securely held in the base body, said closure being placed on one end on an opening of the base body. The closure is screwed on or latched onto the base body depending upon the embodiment of the base body.
The company publication by the company HARTING “Industrie-Steckverbinder Han®, 02 9” (Industrial Connectors Han®, 02 9) discloses cylindrical contact carriers for receiving an electrical contact element. The contact carriers comprise a plug-in end and a connection end. The plug-in end is used for contacting a mating contact, wherein the contact element can be inserted on the connection end into the contact carrier and is held in the contact carrier by means of a holding cap. The contact cap is latched onto the cylindrical base body of the contact carrier, wherein four pairs of latching means are provided on the contact cap and the base body.
This type of contact carriers does in fact comprise a simple assembly procedure in which it is only necessary to insert the contact element into the contact carrier and to snap on the contact cap. However, in contrast, the dismantling procedure of the contact carrier is disadvantageous. It is necessary to simultaneously open multiple latching means before the contact cap can be removed from the base body. Alternatively, a special tool is required in order to remove the contact cap in a simple manner.
There are in fact also embodiments of contact carriers of this type in which the contact cap is held by means of a thread on the base body. However, in this case, the assembly procedure is accordingly more complex since it is likewise necessary to screw the cap on and it is not possible to simply latch the cap on. Moreover, at least one corresponding tool is required for the assembly and dismantling procedures.
The object of the invention is therefore to configure a contact carrier in such a manner that a contact element can be received and fixed, wherein both the assembly procedure as well as the dismantling procedure of the contact element in the contact carrier is to be rendered possible in a simple, rapid manner without auxiliary means such as a tool.
The invention relates to a contact carrier for receiving an electrical contact element. The contact carrier is formed from a base body and a holding element, wherein the base body can receive an electrical contact element and the holding element is used to fix the contact element in the base body.
The base body is configured as a hollow cylinder and comprises a plug-in end and a connection end. The plug-in end is used for contacting a mating plug connector. The connection end is provided for receiving a contact element. The through-going opening of the hollow cylinder extends from the connection end to the plug-in end through the base body that is configured as a contact receiving arrangement. A plug-in axis extends centrally in the base body along the contact receiving arrangement, said plug-in axis predetermining the plug-in direction—in the direction of the plug-in end—of the contact carrier.
The holding element can be inserted on the connection end of the base body at least in regions into the contact receiving arrangement. Moreover, means for fastening the holding element to the base body are arranged on the connection end. The holding element can thus be fastened to the base body and can fix an electrical contact element that is arranged in the contact receiving arrangement of the contact carrier in said contact carrier.
In order to be able to guide the holding element into the base body, the holding element comprises a guiding region. The guiding region protrudes into the contact receiving arrangement of the base body and guides the holding element along the plug-in axis. The guiding region simultaneously prevents the holding element rotating in the base body. For this purpose, the guiding region is configured in such a manner that said guiding region is guided in guide-ways within the contact arrangement in a linear manner along the plug-in axis.
The guiding region is configured in a specific embodiment as at least one holding arm that is used to hold an electrical contact element in the contact carrier. The holding arm protrudes into the contact receiving arrangement of the contact carrier and holds an inserted electrical contact element in said contact arrangement.
A latching region is molded on to the guiding region of the holding element on the connection end. The latching region is provided so as to fix and hold the holding element in the contact receiving arrangement and on the base body. For this purpose, the latching region of the holding element comprises at least one latching means. The latching means can latch with the base body and thus hold the holding element on the base body and in the contact receiving arrangement.
In an expedient embodiment, further latching means are provided on the base body, said latching means cooperating with the at least one latching means of the holding element. It is possible by means of the latching means and the further latching means to thus transfer a force from the holding element to the base body and it is thus possible to fasten and fix the holding element on the base body.
In a preferred embodiment, it is provided that the latching region and the guiding region of the holding element are not rigidly connected to one another. The latching region and the guiding region are configured in such a manner that they can rotate with respect to one another. The rotation of the regions with respect to one another is oriented about the plug-in axis of the contact carrier.
The two regions are connected to one another via an elastic connection. The elastic connection renders it possible to rotate the region about a limited angle with respect to one another. The guiding region and the latching region automatically orient themselves with respect to one another into the original state by means of the elastic connection.
In a specific embodiment, the holding element is produced from a polymer as a single part in order to render possible an elastic connection and rotation. The latching region and the guiding region are connected via at least one thin connecting piece. The regions are preferably connected to one another via at least three connecting pieces that are deflected and are deformed in an elastic manner when the regions are being rotated with respect to one another.
It is rendered possible by means of the elastic deformation and rotation of the holding element to move the latching means of the holding element out of the engagement region of the further latching means on the base body. The latching means are thus rotated on a circular path to the side out of engagement with the further latching means on the base body when the latching region is being rotated. The latching arrangement and holding arrangement of the holding element in the base body is consequently released.
In order to render it possible to rotate the latching region, the holding element comprises an actuating region in an expedient embodiment, said actuating region being arranged on the latching region. The actuating region is thus arranged outside the contact receiving arrangement and the base body with the result that said actuating region can be operated by means of a user.
Expediently, all the components, but at least the base body and the holding element are produced from an electrically-insulating material, preferably a polymer. The present invention consequently solves the disadvantages that are disclosed in the prior art and achieves the present object.
An exemplary embodiment of the invention is illustrated in the drawings and is further explained hereinunder.
In the drawings:
The figures include partially simplified schematic illustrations. In part, identical reference numerals are used for identical but where appropriate non-identical elements. Different views of the same elements could be scaled differently.
The base body 2 comprises a plug-in end 5 that is provided for contacting a mating plug connector or a mating contact carrier. A connection end 6 of the base body 2 is provided on the rear end of the base body 2 when viewed in the plug-in direction. The connection end 6 and also the plug-in end 5 render it possible to access a through-going opening in the base body 2. The opening forms a contact receiving arrangement 4 that is used to receive the electrical contact element 50.
The contact receiving arrangement 4 is simultaneously provided for receiving the holding element 3. The holding element 3 is formed from a guiding region 7 and a latching region 8. The holding element 3 can be inserted first using the guiding region 7 into the contact receiving arrangement 4. Latching arms 13 are used in the plug-in direction as guiding elements that prevent the holding element 3 rotating in the base body 2. Corresponding moldings are provided in the base body 2, said moldings rendering it possible to guide the latching arms 13.
The connection end latching region 8 of the holding element 3 is formed from multiple connecting pieces 12 that are oriented parallel along the plug-in axis A. An actuating region 11 is formed in the connection end rear region on the connecting pieces 12. The actuating region 11 that is configured as a ring connects the connecting pieces 12 to one another. Moldings are molded on the outer face of said actuating region so as to provide improved haptic feedback.
Moreover, two latching means 9 are molded on the actuating region 11. The latching means 9 are used to secure and fix the holding element 3 in the contact receiving arrangement 4 of the base body 2. For this purpose, the latching means 9 can be latched to further latching means 10 that are located on the inner face of the base body 2 in the contact receiving arrangement 4. The latching means 9 and further latching means 10 are configured in such a manner that they latch to one another when the holding element 3 is being inserted into the contact receiving arrangement 4 and prevent the holding element 3 from being pulled out of the contact receiving arrangement 4.
The
The guiding region 7 is essentially formed from two latching arms 13. The latching arms 13 are used on the one hand to guide the holding element 3 in the contact receiving arrangement 4. On the other hand, an inserted electrical contact element 50 is held using the latching arms 13. It is possible to subsequently insert a contact element 50 through the holding element 3 into the contact receiving arrangement 4 by means of the latching arms 13 that are oriented slightly inwards. The latching arms 13 are pressed slightly outwards and latch the contact element 50 in the contact receiving arrangement 4.
The two latching means 9 are illustrated on the actuating region 11 and said latching means can be latched to the further latching means 10 on the base body 2. The latching arrangement of the latching means 9 to the further latching means 10 is further illustrated in the
The actuating region 11 of the latching region 8 of the holding element 3 protrudes from the contact receiving arrangement 4 of the base body 2. It is thus possible for the actuating region 11 to be operated by means of a technician and for the latching region 8 to be rotated. The rotation and unlocking procedure of the latching region 8 is further explained as an operating sequence in the following
The
The actuating region 11 of the latching region 8 is illustrated in
The holding element 3—as is illustrated in
The
The
The further latching means 10 are arranged on the inner face of the base body 2. When the holding element 3 is being inserted into the base body 2, the latching means 9 can be deflected radial inwards with the result that the further latching means 10 can engage into the recesses of the latching means 9. The holding element 3 is thus fixed in the base body 2.
In order to dismantle the holding element 3, it is only necessary for the latching means 9 to be moved inwards towards the plug-in axis A. The latching arrangement of the latching means 9 to the further latching means 10 is thus released and it is possible to dismantle the holding element 3 from the base body 2.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 114 470 | Aug 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2016/100380 | 8/22/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/036453 | 3/9/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4045110 | Sterken | Aug 1977 | A |
4200350 | Zimmerman, Jr. | Apr 1980 | A |
4898548 | Case et al. | Feb 1990 | A |
5026304 | Furrow | Jun 1991 | A |
5344347 | Inoue | Sep 1994 | A |
5766836 | Jones | Jun 1998 | A |
5830010 | Miskin | Nov 1998 | A |
5851128 | Nakata | Dec 1998 | A |
8506329 | Bonner | Aug 2013 | B2 |
9502786 | Wang et al. | Nov 2016 | B2 |
9972932 | Copper | May 2018 | B2 |
Number | Date | Country |
---|---|---|
3839014 | Jun 1990 | DE |
102010028802 | Nov 2011 | DE |
WO2013079358 | Jun 2013 | WO |
WO2015003692 | Jan 2015 | WO |
Entry |
---|
German Office Action (w/machine translation) issued in application No. 10 2015 114 470.0, dated Jul. 18, 2016 (7 pgs). |
Harting Industrial Connectors Han®, version 02 8 (version 02 9 unavailable) downloaded on Feb. 8, 2018 at http://www.harting-usa.com/fileadmin/harting/documents/Ig/hartingusa/news/Han_Indusrial_Connectors_v_02_8.pdf (724 pgs). |
International Preliminary Report on Patentability (translation) issued in application No. PCT/DE2016/100380, dated Mar. 15, 2018 (8 pgs). |
International Search Report (w/translation) and Written Opinion (w/o translation) issued in application No. PCT/DE2016/100380, dated Nov. 15, 2016 (10 pgs). |
Number | Date | Country | |
---|---|---|---|
20180219319 A1 | Aug 2018 | US |