Electro-photography (EP) printing devices form images on print media by placing a uniform electrostatic charge on a photoreceptor and then selectively discharging the photoreceptor in correspondence with the images. The selective discharging forms a latent image on the photoreceptor. Colorant is then developed onto the latent image of the photoreceptor, and the colorant is ultimately transferred to the media to form the image on the media. In dry EP (DEP) printing devices, toner is used as the colorant, and it is received by the media as the media passes below the photoreceptor. The toner is then fixed in place as it passes through heated pressure rollers. In liquid EP (LEP) printing devices, ink is used as the colorant instead of toner. In LEP devices, an ink image developed on the photoreceptor is offset to an image transfer element, where it is heated until the solvent evaporates and the resinous colorants melt. This image layer is then transferred to the surface of the print media being supported on a rotating impression drum.
The transfer of the ink image from the image transfer element to the print media on the impression drum is driven by heat and contact pressure between the image transfer element and the impression drum.
The present embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
The following description provides illustrative examples of an apparatus and printing process associated with an LEP printing process. However, the examples are presented for the purpose of illustration rather than limitation, and they may therefore be applicable to printing processes other than the LEP printing process described below. An LEP printing device implemented as a digital offset press uses electrically charged ink with a thermal offset print blanket. In an LEP printing press, the surface of a photo imaging component is uniformly charged and then selectively discharged to form a latent image. The photo imaging component is often referred to as a “photoconductor” or a “photoreceptor”, and it will be referred to as such for the remainder of this description. The latent image is formed on the photoreceptor using photo-induced electric conductivity and a laser beam that discharges the electro-statically charged photoreceptor in a pattern consistent with the image. Charged liquid ink is then applied to the surface of the photoreceptor, forming an ink image. The charged ink is attracted to locations on the photoreceptor where surface charge has been neutralized by the laser, and repelled from locations on the photoreceptor where surface charge has not been neutralized by the laser.
The ink image is then transferred from the surface of the photoreceptor to an intermediate transfer medium (ITM), referred to herein as the “blanket”, or “print blanket”. The print blanket is wrapped around and attached securely to an ITM drum/cylinder. Transferring the ink image from the photoreceptor to the print blanket is often referred to as the “first transfer”. Transfer of the ink image from the photoreceptor to the print blanket in the first transfer is driven by rolling nip contact forces (i.e., between the photoreceptor and the blanket) and electrophoresis of the electrically charged ink particles. The electric field between the photoreceptor and print blanket that drives the ink transfer is created by a bias voltage applied to the print blanket. In addition to having a bias voltage applied to it, the blanket is heated and maintained at a high temperature in order to evaporate solvents present in the liquid ink and to partially melt and blend solid ink particles. The high blanket temperature, along with contact pressure between the blanket and an impression drum, facilitate a “second transfer” of the image onto the print media. In the second transfer, the ink image is transferred from the print blanket to the print media (e.g., sheet paper, web paper) supported on the impression (IMP) drum through heat and contact pressure between the ITM drum and the IMP drum.
Throughout the printing process, the print blanket encounters a number of wear mechanisms that cause damage to the blanket. Damage to the print blanket eventually has a negative impact on the quality of the printed output. Therefore, such wear mechanisms effectively shorten the useful lifespan of the blanket, since printing press operators typically replace print blankets when the print quality begins to suffer. Unfortunately, replacing print blankets is expensive and reduces printer output efficiency because of the time involved in the replacement process.
One common blanket wear mechanism is referred to as blanket memory. Blanket memory can cause damage to a blanket through the continual placement of the same or similar images in the same position on the blanket. If an image is printed many times (i.e., the same or similar image), so that ink is repeatedly applied to the same areas of the blanket while being repeatedly left off of other areas of the blanket, there is increased damage to the blanket in those areas where no ink is being applied. Subsequently, when a different image is printed that calls for the application of ink onto the blanket in areas where ink has not been previously applied, the appearance of the printed image varies between those areas where ink had been previously applied and those areas where ink had not been previously applied.
Another blanket wear mechanism is the repeated pressing of the print media against the print blanket. Mechanical wear of the blanket is caused by the direct interaction of the print media (paper) on the IMP drum with the blanket. Under normal printing conditions, the ITM drum and IMP drum are engaged so as to bring the print blanket and print media into contact. The ITM and IMP drums are compressed together and can have a contact force between them, for example, on the order of 300 to 400 kilograms. The repeated high pressure contact between the blanket and the print media held on the IMP drum can cause the sharp edges of the media to cut into the blanket release layer. Subsequently, when images are printed in areas that extend beyond the cutmarks (e.g., when a larger image is printed), the ink in the cut-mark areas does not transfer well to the print media, and the cut-marks become visible as defects on the printed output.
Furthermore, during a null cycle when normal printing is briefly suspended, these damaging effects on the blanket can be exacerbated. A null cycle is a non-productive cycle that occurs within the printing press due to an interrupt from a printing subsystem. During a null cycle, the writing and development of images to the photoreceptor are suspended, and the transportation of paper may be stopped. Paper may or may not remain on the IMP drum during a null cycle, but the force between the ITM and IMP drums is no longer needed to transfer an image to the paper. Therefore, during a null cycle the force between these drums can continue to cause damage to the print blanket while no images are transferred. In addition, the print blanket is dry because no ink is transferred during null cycles. During a null cycle, the dry print blanket and having no paper on the IMP drum can both increase damage to the blanket caused by direct interaction and pressure between the ITM drum and IMP drum. Damage from this interaction can include, for example, damage to the blanket release layer due to the impression paper, back transfer of dirt from the paper to the blanket, and tearing of the paper.
The press can insert null cycles into the printing process between normal printing cycles based on information it receives from printing subsystems. For example, as an image in a current print cycle is transferred from the blanket to the print media during normal printing, an interrupt can be received from a printing subsystem that causes insertion of a null cycle. An interrupt that triggers a null cycle can be generated by various printing subsystems as a way to inform the print controller within the press that the subsystem is not ready to continue with normal printing. For example, during normal printing, a sensor in the print media transport system may detect that the print media has not arrived at a particular location along the media transport path by a designated instant in time. The detection by the media transport system of such a media timing issue can serve as an interrupt to the print controller within the press that triggers a null cycle. For each subsequent print cycle during which the interrupt from the media transport system persists, an additional null cycle will be inserted to continue suspending the normal printing process. In another example, while performing a color calibration, the printing press can insert null cycles into the printing process while it waits for an inline densitometer/spectrophotometer to measure a printed page before it prints a next page.
During a null cycle, the printing press operates as if normal printing is being performed, but there is actually no image development or image transfer taking place. During the null cycle, most of the printing components remain operational so that when the next print cycle begins, these components are ready to resume writing and transferring images as normal. For example, in a null cycle, the photoreceptor drum, ITM drum, and the image IMP drum will continue to spin. In addition, the contact pressure between the ITM drum and IMP drum can remain high in anticipation of an upcoming printing cycle. However, during the null cycle there is no development of an image onto the photoreceptor and no transfer of an image from the photoreceptor to the blanket on the ITM drum. Thus, the “first transfer” of an ink image from the photoreceptor to the print blanket does not occur during a null cycle. Because there is no transfer of an ink image to the print blanket during the null cycle, the blanket will be dryer during the null cycle than it is during a normal printing cycle because the blanket will be devoid of any ink, ink solvents, or other liquid carrier that typically coat the blanket during a printing cycle. Unfortunately, as noted above, the dry print blanket tends to increase the damage to the blanket caused by the direct interaction and pressure between the ITM drum and IMP drum. As a result, damage to the print blanket is greater during null cycles that during normal printing cycles.
Accordingly, example systems and methods described herein detect the onset of a null cycle and make an adjustment to the contact between a print blanket and an IMP drum. The adjustment in the amount of contact between the print blanket and IMP drum surface reduces the contact from a print level that is used during normal printing, to a null level used during the null cycle when normal printing has been suspended. The null level of contact minimizes or avoids the damaging effects resulting from the interaction of the blanket with the print media (paper) on the IMP drum and from the pressure between the ITM drum and IMP drum. When the print controller in the press detects or receives an interrupt that will trigger a null cycle, the distance between the center axis of the ITM drum and the center axis of the IMP drum is increased. This increase in distance between the drum axes moves the drums away from eachother and reduces the pressure between the drums. The reduced pressure decreases the nip (i.e., the contact area) between the print blanket and the surface of the IMP drum.
In one example, a method of controlling contact between a print blanket and an impression drum includes printing a print job, and during the printing, receiving a null cycle trigger. In response to the null cycle trigger, contact between a print blanket and an impression drum is reduced. In another example, a non-transitory machine-readable storage medium stores instructions that when executed by a processor of a printing device, cause the printing device to detect an interrupt from a printing subsystem during a print cycle of a printing process. In response to detecting the interrupt, contact between a print blanket and an impression drum is reduced from a print level to a null level. In addition, a first null cycle is inserted into the printing process following the print cycle. Thereafter, for each null cycle in which the detection of the interrupt persists, an additional null cycle is inserted into the printing process and the reduced contact between the print blanket and the impression drum is maintained during each null cycle. In another example, a printing device includes a print blanket to transfer an ink image onto print media on an impression (IMP) drum during printing. The printing device further includes a drum displacer to displace the IMP drum, and a controller to receive a null cycle trigger, and in response to the trigger, to cause the drum displacer to move the IMP drum away from the print blanket during the null cycle.
An LEP printing press 100 includes a print engine 102 that receives a print substrate, illustrated as print media 104 (e.g., cut-sheet paper) from a media input mechanism 106. After the printing process is complete, the print engine 102 outputs the printed media 108 to a media output mechanism, such as a media stacker tray 110. The printing process is generally controlled by a print controller 120 to generate the printed media 108 using digital image data that represents words, pages, text, and images that can be created, for example, using electronic layout and/or desktop publishing programs. Digital image data is generally formatted as one or multiple print jobs that are stored and executed on the print controller 120, as further discussed below with reference to
The print engine 102 includes a photo imaging component, such as a photoreceptor 112 mounted on an imaging drum 114 or imaging cylinder 114. The photoreceptor 112 defines an outer surface of the imaging drum 114 on which images can be formed. A charging component such as charge roller 116 generates electrical charge that flows toward the photoreceptor surface and covers it with a uniform electrostatic charge. The print controller 120 uses digital image print data and other inputs such as print job and print media parameters, temperatures, and so on, to control a laser imaging unit 118 to selectively expose the photoreceptor 112. The laser imaging unit 118 exposes image areas on the photoreceptor 112 by dissipating (neutralizing) the charge in those areas. Exposure of the photoreceptor in this manner creates a ‘latent image’ in the form of an invisible electrostatic charge pattern that replicates the image to be printed.
After the latent/electrostatic image is formed on the photoreceptor 112, the image is developed by a binary ink development (BID) roller 122 to form an ink image on the outer surface of the photoreceptor 112. Each BID roller 122 develops one ink color of the image, and each developed color corresponds with one image impression. While four BID rollers 122 are shown, indicating a four color process (i.e., a CMYK process), other press implementations may include additional BID rollers 122 corresponding to additional colors. In addition, although not illustrated, print engine 102 also includes an erase mechanism and a cleaning mechanism which are generally incorporated as part of any electrophotographic process.
In a first image transfer, the single color separation impression of the ink image developed on the photoreceptor 112 is transferred from the photoreceptor 112 to an image transfer blanket 124. The image transfer blanket 124 is primarily referred to herein as the print blanket 124 or blanket 124. The print blanket 124 is wrapped around and securely fastened to the outer surface of the intermediate transfer media (ITM) drum 126. The first image transfer that transfers ink from the photoreceptor 112 to the print blanket 124 is driven by electrophoresis of the electrically charged ink particles and an applied mechanical pressure between the imaging drum 114 and the ITM drum 126. The electric field that drives the ink transfer is created by a bias voltage applied to the print blanket 124. Both the blanket bias voltage and the mechanical pressure between the imaging drum 114 and ITM drum 126 can impact the image transfer quality.
The print blanket 124 is heated by both internal and external heating sources such as infrared heating lamps (not shown). The heated print blanket 124 causes most of the carrier liquid and solvents in the transferred ink image to evaporate. The heated blanket 124 also causes the particles in the ink to partially melt and blend together. This results in a finished ink image on the blanket 124 in the form of a hot, nearly dry, tacky plastic ink film. In a second image transfer, this hot ink film image impression is then transferred from the blanket 124 to a substrate such as a sheet of print media 104 (e.g., paper), which is held or supported by an impression (IMP) drum/cylinder 128. Contact pressure between the ITM drum 126 and IMP drum 128 compresses the blanket 124 against the print media 104 to facilitate the transfer of the hot ink film image. The temperature of the print media 104 is below the melting temperature of the ink particles, and as the ITM drum 126 and IMP drum 128 rotate against one another under pressure, the hot ink film comes into contact with the cooler print media 104 and causes the ink film to solidify and peel off from the blanket 124 onto the print media 104.
This process is repeated for each color separation in the image, and the print media 104 remains on the impression drum 128 until all the color separation impressions (e.g., C, M, Y, and K) in the image are transferred to the print media 104. After all the color impressions have been transferred to the sheet of print media 104, the printed media 108 sheet is transported by various rollers 132 from the impression drum 128 to the output mechanism 110.
As mentioned above, during normal printing, an ink image is transferred from the print blanket on the ITM drum to the print media supported on the IMP drum in a second image transfer. The second image transfer is driven by contact pressure between the ITM drum and the IMP drum. However, during a null cycle, normal printing is suspended and the contact pressure between the ITM and IMP drums is not needed because there is no image transfer taking place. In addition, continued contact pressure between the ITM and IMP drums during a null cycle can be especially damaging to the print blanket due in part to the blanket being dry during the null cycle. Thus, as shown collectively in
Referring now generally to
As noted above, print controller 120 uses digital image data and other inputs to control the laser imaging unit 118 in the print engine 102 to selectively expose the photoreceptor 112. More specifically, controller 120 receives digital print data 204 from a host system, such as a computer, and stores the data 204 in memory 202. Data 204 represents, for example, documents or image files to be printed. As such, data 204 forms one or more print jobs 206 for printing press 100 that each include print job commands and/or command parameters. Using a print job 206 from data 204, print controller 120 controls components of print engine 102 (e.g., laser imaging unit 118) to form characters, symbols, and/or other graphics or images on print media 104 through a printing process as has been generally described above with reference to
As previously mentioned, normal printing can be suspended in the press 100 when the print controller 120 receives or detects a null cycle trigger. A null cycle trigger can comprise an interrupt generated by a printing subsystem 136, such as a color calibration subsystem or media transport subsystem. Such subsystem interrupts provide an error indication to the print controller 120 that the subsystem is not ready to continue normal printing. The controller 120 includes drum displacement module 208 which comprises program instructions stored in memory 202 and executable on processor 200 to cause the print controller 120, and/or printing press 100, to receive or detect a subsystem interrupt and to initiate various actions in response to the interrupt. For example, executing instructions from module 208, the controller 120 can use the interrupt as a trigger to insert a null cycle into the printing process and to control the drum displacement mechanism 134 to move the IMP drum 128 away from the ITM drum 126 to help reduce damage to the print blanket 124 during the null cycle.
The drum displacement mechanism 134, also referred to as drum displacer 134, functions to move the IMP drum 128 away from and toward the ITM drum 126 by moving the axis of rotation, A1, of the IMP drum 128 farther from and closer to the axis of rotation, A2, of the ITM drum 126. The result of such movement is to alternately reduce (during null cycles) and increase (during print cycles) the amount of contact and pressure between the print blanket 124 on the ITM drum 126 and the surface 300 of the IMP drum 128. The contact area between the print blanket 124 and the IMP drum surface 300 is often referred to as the “nip” 304. The nip 304 refers to the region between the two drums (126, 128) where the print blanket 124 and the IMP drum surface 300 are in closest proximity to one another, which can be seen more clearly in the cutout portion 302 of
Referring to the cutout 302 in
Under normal printing conditions, print controller 120 controls drum displacer 134 to position the axis A1 of the IMP drum 128 in a print position 306. In the print position 306, the distance D between axis A1 of the IMP drum 128 and axis A2 of ITM drum 126 provides an appropriate pressure between the drums to facilitate the second transfer of the image between the blanket 124 and the print media 104 as the media passes through the nip 304. While the print position 306 is generally described as being maintained at a constant position, in some examples the print position may be adjusted based on fluctuations made to keep the pressure constant during the second image transfer. During printing, increased pressure and contact between the blanket 124 and surface 300 is made apparent by the increased width of the nip 304, illustrated as WPrint. However, during a null cycle when normal printing is suspended, the print controller 120 (executing module 208 instructions) can advantageously reduce the pressure and contact between the blanket 124 and the print media 104. Therefore, upon receiving an interrupt, print controller 120 can control drum displacer 134 to position the axis A1 of the IMP drum 128 in a null position 308. In the null position 308, the distance D between axis A1 of the IMP drum 128 and axis A2 of ITM drum 126 is increased to reduce the pressure between the drums. During a null cycle, the reduced pressure and contact between the blanket 124 and surface 300 is made apparent by the shortened width of the nip 304, illustrated as WNull. It should be noted that the movement shown in
During a null cycle, the controller 120 (e.g., executing instructions from module 208) can continue to insert additional null cycles into the printing process if the controller 120 detects that the subsystem interrupt is ongoing. During the null cycles, the controller 120 can maintain the IMP drum 128 at the null position 308 to continue the reduced pressure between the ITM and IMP drums and the reduced contact between the blanket 124 and drum surface 300 (i.e., reduced the width of nip 304). When the controller 120 detects that the subsystem interrupt has terminated, or is no longer present, the controller 120 can resume the printing process and control the drum displacer 134 to again position the axis A1 of the IMP drum 128 in the print position 306. In some examples, when enough consecutive null cycles are inserted, the controller 120 can eventually cause the press to “time-out” and put the press into a standby mode in which, for example, the drums stop rotating and certain printing subsystems enter an off or “sleep”-like state.
Methods 400 and 500 may include more than one implementation, and different implementations of methods 400 and 500 may not employ every operation presented in the respective flow diagrams. Therefore, while the operations of methods 400 and 500 are presented in a particular order within the flow diagrams, the order of their presentation is not intended to be a limitation as to the order in which the operations may actually be implemented, or as to whether all of the operations may be implemented. For example, one implementation of method 400 might be achieved through the performance of a number of initial operations, without performing one or more subsequent operations, while another implementation of method 400 might be achieved through the performance of all of the operations.
Referring now to the flow diagram of
Referring now to the flow diagram of
This application is a Continuation of commonly assigned and co-pending U.S. patent application Ser. No. 15/320,385, filed Dec. 20, 2016, which is a national stage filing under 35 U.S.C. § 371 of PCT Application Number PCT/EP2014/063880, having an international filing date of Jun. 30, 2014, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2261913 | Davidson, Jr. | Nov 1941 | A |
3234874 | Hornberger et al. | Feb 1966 | A |
4723145 | Takada et al. | Feb 1988 | A |
5012735 | Fischer et al. | May 1991 | A |
5066988 | Miyake | Nov 1991 | A |
5272975 | Dettinger et al. | Dec 1993 | A |
5445076 | Sugiyama et al. | Aug 1995 | A |
5588364 | Bolza-Schunemann | Dec 1996 | A |
5649482 | Hummel | Jul 1997 | A |
5683512 | Mailander | Nov 1997 | A |
6308620 | Wadlinger | Oct 2001 | B1 |
8041272 | Nedelin | Oct 2011 | B2 |
8068757 | Hashiglichi | Nov 2011 | B2 |
9616657 | Rancourt | Apr 2017 | B2 |
20030059717 | Tabuchi | Mar 2003 | A1 |
20060291875 | Ishihara | Dec 2006 | A1 |
20070019996 | Romem | Jan 2007 | A1 |
20070157832 | Menu | Jul 2007 | A1 |
20080072777 | Iwamoto | Mar 2008 | A1 |
20080279587 | Dehn et al. | Nov 2008 | A1 |
20110139023 | Malkic et al. | Jun 2011 | A1 |
20110158690 | Mimbu | Jun 2011 | A1 |
20110293307 | Ogata | Dec 2011 | A1 |
20130333580 | Peleg et al. | Dec 2013 | A1 |
20150212454 | Ichikawa | Jul 2015 | A1 |
Entry |
---|
Bartolic, et al., “Impact of Printing Additional Inks on Multicolor Reproduction in Liquid Toner Electrophotography”, International Conference on Materials, Tribology, Recycling (Research Paper) Jun. 27-29, 2013, 13 pages. http://bib.irb.hr/datoteka/635350.3_Bartolic_Majnaric_Bolanca.pdf. |
International Preliminaty Report on Patentability dated Jan. 12, 2017, PCT Patent Application No. PCT/EP2014/063880, filed Jun. 30, 2014, The International Bureau of WIPO, 10 pages. |
International Search Report and Written Opinion dated Sep. 4, 2014, PCT Patent Application No. PCT/EP2014/063880, filed Jun. 30, 2014, European Patent Office, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20180373181 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15320385 | US | |
Child | 16119938 | US |