This application is the US-national stage of PCT application PCT/EP2018/057155 filed 21 Mar. 2018 and claiming the priority of German patent application 102017106182.7 itself filed 22 Mar. 2017.
The invention relates to a contact for a plug connector, which contact comprises a crimp region that attaches the contact to an electrical conductor of a wire, the contact comprising two elastic contact formations for a mating contact in a contact region
Such a contact is disclosed, for example, in published German patent application DE 10 2014 113 490. In the case of the embodiment of this patent application, the duplicate contact formation is formed by one single stamped-bent part. This certainly functions satisfactorily in principle, however there is the desire, in particular, for greater contact forces in the contact region to the mating plug connector that cannot be supported reliably by one stamped-bent part.
The object of the invention is to improve the disclosed generic contact for a plug connector.
This object is in that the two contact formations in the contact region of the plug connector to the mating plug connector are retained. However, the one contact formation is realized by the contact itself, that is to say the stamped-bent part, the second contact formation being formed by a further contact that is on the contact. As a result, the advantage of the duplicate geometry, as described in DE 10 2014 113 490, can be retained. However, the force acting in the contact region can be adjusted, preferably increased, in a targeted manner as a result of the choice of the geometry (such as for example the thickness of the material) and of the material of the further contact that is to be mounted on the contact. The contact force can preferably be increased significantly as a result of fixing the additional contact and, for example, setting a different geometry or a greater material thickness or else also as a result of choosing a suitable material. A further advantage of the arrangement of an additional contact on the stamped-bent part, which itself forms the base contact, can be seen in that, by means of the contact, arbitrary geometries, which are not possible otherwise when producing the contact with the duplicate contact formation in the contact region as described in the prior art, can be realized for the additional contact not only in the case of a different material to the material of the stamped-bent part or to the material thickness thereof. As a result, the geometric freedom for realizing the contact according to the invention and, in particular, the increase in contact forces, is significantly boosted.
In a further development of the invention, the contact is realized in regions as a contact sleeve that receives the mating contact, wherein the contact sleeve comprises at least one projecting angled web on at least one longitudinal edge in the region of its abutting longitudinal edges. As a result of this design, the contact can be provided from a flat base material, reshaped and brought into its end form, which is a box form, into which the mating contact can be inserted. The production process is preferably a stamping and bending process. The at least one projecting angled web on at least one longitudinal edge is initially in the same plane as the side of the contact sleeve from which it projects. In order to close the box permanently and to avoid deformation, in particular when the mating contact is inserted, the projecting web is consequently not angled until the contact sleeve has been brought into its box form.
The at least one angled web that projects above the outer surface of the contact sleeve additionally serves for guiding the contact when it is inserted into a corresponding contact chamber of a contact holder. As a result of this at least one angled web, preferably multiple angled webs, the contact sleeve is guided precisely into its end position when it is inserted into the contact chamber of the contact holder.
In a further development of the invention, in the region of its abutting longitudinal edges, the contact sleeve, on the one longitudinal edge, comprises at least one web that engages in a corresponding recess in the other longitudinal edge. As a result of this tongue and groove design, the contact sleeve, after its reshaping from the flat element into the box form, is held in its form as well as or as an alternative to the at least one projecting angled web. Connecting the webs together permanently on the one longitudinal edge, which engages in a groove of the other longitudinal edge, via a weld point, for example carried out by laser welding, can be conceivable.
In a further development of the invention, an angled part is provided on an end of the contact sleeve that is remote from the crimp region. Contact polarization is effected as a result of this setback angled part, for example in the form of a tab that is at the end face of the contact.
In a further development of the invention, at least one end angled part is formed by the contact sleeve in a region of the contact sleeve to which the crimp region connects. As a result of this at least one end angled part, the contact can also be guided, but does not have to be, when it is inserted into the contact chamber of the contact holder. In addition to this or as an alternative to it, the at least one end angled part has the job of realizing a defined stop for the contact, the stop interacting with a locking latch of the contact holder. By means of this locking latch, the contact is fixed in its end position in the contact chamber of the contact holder. The actuation of the locking latch is not possible until the contact is inserted in its proper position in the contact holder. If this is not the case, the locking latch, which is preferably oriented and actuated transversely to the longitudinal shaping of the contact, is not actuated as its actuation is blocked either by the crimp tabs or the at least one end angled part.
In a further development of the invention, two end angled parts, which are aligned parallel to the longitudinal axis of the contact sleeve, are formed by the contact sleeve, wherein the ends of the two end angled parts stand out from the surface of the contact sleeve and are aligned at a spacing from one another. As a result of this end angled parts, which are designed symmetrically to the longitudinal axis of the contact sleeve, the production of the contact sleeve can be further simplified. Furthermore, it is possible to actuate the locking latch selectively from the one side or the other side proceeding from the contact chamber in the direction of the contact.
In a further development of the invention a contact spring is provided integrally with the contact sleeve proceeding from the contact sleeve pointing into its interior. This contact spring, together with the contact that is arranged as an additional element via the connection on the contact, in particular the contact sleeve, forms an increase in the normal force for the contact force when the mating contact is inserted into the interior of the contact sleeve. The contact, which is arranged via the connection on the contact sleeve, acts on the inserted mating contact together with this contact spring via a two-lever principle.
In a further development of the invention, the connection between the contact sleeve and the contact spring comprises a thickness reduction. Apart from the fact that the contact spring, which points into the interior of the contact sleeve, can be produced together with the contact sleeve itself, the advantage of the thickness reduction is that, as a result, the spring force or the spring characteristic curve of this additional contact spring can be set precisely. For example, the spring force or the alignment of this contact spring can be set such that it is ensured that this contact spring abuts at all times (that is to say without the mating contact inserted or with the mating contact inserted into the contact sleeve) against the contact that is on the contact sleeve by means of the connection. The advantage of the thickness reduction, furthermore, is that this abutting force can be adjusted in a targeted manner.
In a further development of the invention, the end of the contact spring abuts against a central region of the contact that is fastened via the connection. A plane-parallel abutment can consequently be realized in order to optimize the method of operation of the increase in normal force via the two-lever principle.
In a further development of the invention, the contact comprises a straight central region between the region in which it is fixed on the contact sleeve via the connection and its free end that points away from this. Here too, this results in a plane-parallel abutment of the contact against the free end of the contact spring for realizing the two-lever principle. This means that the geometry of the contact spring and of the contact are optimally matched to one another.
In a further development of the invention, the free end of the contact that is fixed on the contact via the connection, or of the contact sleeve thereof, comprises an end bend. This bend of the end of the contact prevents it from projecting outward from the contact sleeve into free space in such a manner that the contact is bent as a result of an external source. The bend of the free end consequently prevents unwanted deformation of the contact away from the contact sleeve such that this disadvantageous deformation is effectively avoided by the bend.
In a further development of the invention, at least one contact chamber support is formed by the contact sleeve in a region of the contact sleeve to which the crimp region connects. The achievement as a result of this contact chamber support is that the contact, after its production, is moved into a defined position when inserted into its associated contact chamber. The contact chamber support consequently produces a stop that comes to abut against a corresponding geometry of the contact chamber. If this occurs, the contact is situated in its proper position in the contact chamber. In this case, the contact chamber support interacts in an advantageous manner with the at least one end angled part in such a manner that the locking latch cannot be actuated until the contact chamber support has reached its required position in the contact chamber. In a further advantageous design, the contact chamber support is provided with a spring characteristic. As a result, the contact can advantageously be inserted into the contact chamber and fixed there in an automated manner. In order to realize a spring characteristic, the at least one contact chamber support is provided with a compression spring end geometry. Such a geometry can be realized, for example, by the contact chamber support being of an angled, arcuate, s-shaped or similar geometry in cross section.
In a further development of the invention, the end of the bend of the free end of the contact is aligned parallel to and at a spacing from the end of the end-face angled part of the contact sleeve. As a result, a defined gap is formed in this region that realizes protection against wire undercut and protection against over-extension in the direction of the contact sleeve. In particular, the spacing between the two end edges that face one another is chosen such that it is at least somewhat smaller than the outer diameter of the cable to which the contact is attached. This prevents, in an effective manner, the cable being able to penetrate into this front region of the contact when the cable is being stored, transported or handled with the contact already thereon.
In a further development of the invention, an outwardly projecting latching lug is formed by the contact sleeve. This latching lug acts together with a corresponding geometry in the contact chamber. As a result, the contact is primarily locked when it has been inserted into its contact chamber and has reached its proper end position. The locking latch, which consequently produces secondary locking of the contact on its contact holder, can be actuated in addition to this primary locking as already described.
In a further development of the invention, an indentation that points into the interior of the contact sleeve is provided between the region from which the latching lug projects from the contact sleeve and the end of the contact sleeve that is remote from the crimp region. This indentation, which can be produced, for example, using a thickness reduction method, realizes an extensive level inside the contact sleeve in order to avoid the formation of cracks on the underside of the contact domes that engages the contact with the inserted mating contact.
Different views of an embodiment are shown in the drawing in which:
At the front end, that is to say on the end of the contact 1 remote from the crimp region, there is an angled part 7. This angled part 7 lies at the front end in the same plane as the end-face end of the contact 1.
The additionally mounted contact 3 comprises a bent part 8 at its free end. In addition, the contact 1 comprises a contact sleeve 9. A contact spring 10, which interacts with the contact 3, extends from the contact sleeve 9. The contact spring 10 can have, but does not have to have, a thickness reduction 11 in the transition region from the contact sleeve 9 to the free region. In addition, the contact sleeve 9 forms an end angled part 12 formed with two projecting tabs that spaced along the longitudinal axis of the contact 1. In addition, there is a contact chamber support 13. This contact chamber support 13 is formed in this embodiment by the additionally attached contact 3. As an alternative to this or in addition to it, such a contact chamber support 13 can also be formed by the contact sleeve 9.
In addition,
When looking at
The various views of the contact according to the invention already described above are shown one more time in
With reference to
Both in general and for the embodiment described above as well as for the embodiment still to be described below, the one contact formation is realized by the contact 1 itself, that is to say the stamped-bent part thereof (as a result of direct abutment of the mating contact against the contact 1, the contact sleeve 9 thereof, the contact spring 10 thereof, the indentation 16 thereof and/or the at least one contact point 17 thereof), the second contact formation being formed at least by the further contact 3 that is on the contact 1, in particular on the contact sleeve 9 thereof. This further contact 3 then abuts directly against the mating contact when this mating contact is inserted into the contact sleeve 9, and consequently produces the electrical connection, or it abuts indirectly against the mating contact when this mating contact is inserted into the contact sleeve 9, for example via the contact spring 10, such that the contact 3 acts with a required force on the mating contact via the contact spring 10 and, as a result, not only is the contact formation formed but the electrical connection between the contact 1 and the inserted mating contact is also produced.
A further embodiment is shown in
The duplicate contact formation is also present but both contact regions that form the duplicate contact formations can be designed identically but do not have to be.
In the case of the illustrated contact 1, a contact 2 formed from the stamped-bent part that forms the contact 1 is provided for forming the one contact region. A further contact 3 is produced independently of the stamped-bent part preferably also in a stamping and bending process and is on the basic body of the contact 1. Mounting of the additional contact 3 on the base contact 1 is preferably effected by a connection 4, which can be a rivet or a connection by caulking.
Number | Date | Country | Kind |
---|---|---|---|
102017106182.7 | Mar 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/057155 | 3/21/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/172406 | 9/27/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5338229 | Egenolf | Aug 1994 | A |
5573434 | Ittah | Nov 1996 | A |
6062918 | Myer | May 2000 | A |
6872103 | Flieger | Mar 2005 | B1 |
6918798 | Patel | Jul 2005 | B2 |
8366494 | Nishide | Feb 2013 | B2 |
9011186 | Wirth | Apr 2015 | B2 |
9431723 | Chikusa | Aug 2016 | B2 |
9831586 | Uezono | Nov 2017 | B2 |
9905955 | Endo | Feb 2018 | B2 |
10122108 | Bhagyanathan Sathianathan | Nov 2018 | B2 |
20060166547 | Deutmarg | Jul 2006 | A1 |
20070298648 | Fekonja | Dec 2007 | A1 |
20100210154 | Boemmel | Aug 2010 | A1 |
20140030934 | Wirth | Jan 2014 | A1 |
20190363487 | Metzler | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
102017113490 | Mar 2016 | DE |
Number | Date | Country | |
---|---|---|---|
20190363487 A1 | Nov 2019 | US |