This application relates in general to packaging and in particular, to an electrode interfacing receptacle.
Freezing is commonly used to preserve and store food and other organic material. Freezing involves keeping an object at sub-zero temperatures to minimize microbial damage of that object. However, during the process of freezing, unwanted chemical composition changes, nutritional damage and physical damage can occur in the object. Freezing is also time consuming and can be restricted to particular organic objects, rendering the process unavailable for some oil-based foods and objects with low water content.
The restrictions of freezing, including freeze drying, and refrigeration for preservation can both be overcome by supercooling, while permitting the advantages of both techniques to be present. Currently used supercooling techniques utilize fields, such as magnetic and electromagnetic fields, as described in U.S. Pat. No. 10,588,336, to Jun, to help preserve the physical, nutritional, and sensory characteristics of an object, such as a biological item, while subjecting the object to a temperature below the freezing point of water without freezing the object itself. This is enabled by the suppression or prevention of phase change of both intracellular and intercellular water in the intended object. The fields can include a pulsed/oscillating electric field, pulsed/oscillating magnetic field, or a combination of fields to reorient and induce agitation of water molecules in the object (among other physico-chemical controls), thus suppressing or preventing the formation of ice from the water molecules. Specifically, an electrical current or electric fields can be passed through an object being supercooled when the object is in direct contact with at least one electrode. Agitation can include vibration or excitement of the water molecules. However, when the object is a food item or beverage, direct contact with a contact, such as electrodes or magnets, can cause contamination, health issues, and aesthetic problems.
Accordingly, a receptacle that houses a food item, and has the ability to prevent the food item from directly touching electrodes, while compelling energy through or supplying energy to the food item is needed. Preferably, the receptacle is able to conform to the food item and evenly distribute energy.
During monitoring, a food item may directly touch a contact, such as an electrode, to enable an electrical current to be passed through or to supply energy to obtain information about a state of the food item. However, direct contact of a food item with an electrode is undesirable and can be a source of contamination. A contact interfacing receptacle can provide a barrier between the food item and electrode contact, while allowing fields from the electrode to supply energy or pass electrical currents, electric fields, magnetic fields, or magnetic currents through the food item.
An embodiment provides a contact interfacing conductive receptacle. The contact interfacing conductive receptacle includes a housing sized to receive an object including water. The housing includes one or more non-transfer material pieces and two or more transfer material pieces. Each transfer material piece is configured to provide conductivity and provides a field to a different portion of the object. The transfer material pieces are integrated with the non-transfer material pieces.
Other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein is described embodiments of the invention by way of illustrating the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modifications in various obvious respects, all without departing from the spirit and the scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
When food items are undergoing processing or monitoring, the food item may require contact with one or more electrodes to pass electrical current through the food item or generate electrical fields to obtain data regarding a condition of the food item. For example, during the supercooling process, a water-containing food item is generally in direct contact with at least one electrode or other type of field generator, which generates a field that creates agitation or energization of water molecules in the food item to prevent nucleation, while cooling the food item to a temperature below freezing. However, direct contact between the food item and electrodes is undesirable and may cause contamination. An electrode interfacing receptacle can act as a barrier between the food item and electrodes, while facilitating the passing of an electrical field evenly through the food item to prevent nucleation during supercooling.
The electrode interfacing receptacle can be utilized with a feedback device to monitor and control the food item and fields during supercooling.
The supercooling device 11 communicates with a feedback server 14, 16 via an internetwork 12, such as the Internet or cellular network, to obtain and adjust characteristics of the field based on the obtained characteristics. In one embodiment, the feedback server 14 can be a cloud-based server. Alternatively, the server 16 can be locally or remotely located with respect to the supercooling device 11. The feedback server 14, 16 can include an identifier 18, 20 and an adjuster 19, 21. The identifier 18, 20 can utilize measurements for characteristics of the object obtained from the supercooling device 11 to determine an identity or classification of the object based on known composition values 22, 24 of objects stored in a database 15, 17 associated with the server 14, 16. Machine learning can also be used in lieu of or in addition to a look up table of compositions and identities or classifications. In a further embodiment, identification or classification of an object can occur on the supercooling device 11, such as via a processor.
The adjuster 19, 21 can determine parameters for an initial field to be applied to the object 28 during supercooling based on an identity of the object 28. The fields can include magnetic, electric, and electromagnetic fields, such as via electrodes, magnets, or electromagnets, as further discussed below with references to
While the initial field is applied, the adjuster 19, 21 can also utilize data obtained from the supercooling device 11 regarding the object and the field to determine whether the field should be adjusted to ensure an appropriate supercooling temperature is reached, without allowing nucleation of ice via the water content in the object. The adjustment can be determined using characteristic values 23, 25 for the object and parameter values for the field, which are stored by the databases 15, 17 to determine new parameter values for the field. In a further embodiment, ranges of object characteristics and field parameters can be stored on the supercooling device 11 for use in adjusting the supercooling fields applied to an object. Alternatively, machine learning can also be used to determine and adjust field parameters in lieu of a stored look up table of characteristic values and parameters.
The feedback device relies on one or more sensors to determine initial and updated field parameters, which are provided to contacts, including field generators, such as electrodes or magnets for applying to an object, such as a food item.
One or more field generators 42 a,b, 43 a,b can be positioned with respect to the repository 40. The field generators can each include a magnet, electrode, wires, electromagnets, or other material systems, such as 2D materials, including for example, graphene, van-der-waals layered materials or organic conductive polymers. At a minimum, the field generators should each be able to apply a field to an object 44 placed on or within the repository 40 to control nucleation, including preventing nucleation from occurring, via the field. For instance, the housing can include a compressor (not shown) for cooling the food item to a temperature between a range of −1° C. to −20° C. for preservation. The fields applied by the field generators initiate agitation or energization of water molecules in the food item to prevent nucleation or freezing, while the food item itself reaches temperatures below freezing. Initial values for parameters of the fields to be applied can be determined based on an identity of the object or a classification of the object, while further values of the parameters are based on monitored characteristics of the object to which the fields are applied.
One or more electrodes 43 a,b can be positioned on a bottom side of the repository 40, along an interior surface, to generate a pulsed electric field. Other positions of the electrodes are possible, including on opposite sides (not shown) of the repository 40. When placed in a position other than the bottom of the repository, the electrodes can be affixed to walls of the standalone housing or walls of a housing, such as an appliance. The electrodes can be positioned to contact the object or in a further embodiment, can be placed remotely from the object. In one embodiment, a pair of electrodes can be positioned across from one another, with the object placed between the pair of electrodes. Once positioned, the electrodes can provide an electric field to the object.
To prevent any direct contact between the food item 44 and the electrodes 43, the food item 44 can be placed in an electrode interfacing receptacle 47. The electrode interfacing receptacle 47 can include transfer material 46 that is capable of conductivity, including transferring electricity from the electrodes through the food item. Examples of the transfer material 46 can include metal, an organic semiconductor, aluminum, certain other metals, such as gold, silver or platinum, organic polymers, biocompatible conducting materials, and graphene, as well as other types of materials. However, at a minimum, the transfer material 46 should be food safe and able to withstand the current necessary to deliver an electrical field to the food item.
To ensure the transfer of the electrical field through the food item, areas of infinite impedance are present between each piece of transfer material. If different pieces of transfer material touch, a short circuit can occur and the current is unable to completely pass through the food item. The areas of infinite impedance can be present as a gap 48 between two or more pieces of transfer material placed on the food item 44 at different locations or as non-transfer material 48, which is placed in between pieces of transfer material. Different configurations of the transfer and non-transfer materials of the electrode interfacing receptacle are discussed below in further detail with respect to
When placed in the repository or on a bottom surface of the supercooling device, the transfer material on one side of the receptacle can touch or contact electrodes in the repository or elsewhere in the supercooling device. The transfer material then touches a portion of the food item inside the receptacle. A different area of the food item is in contact with a separate piece of transfer material, such as on a separate side of the receptacle. If multiple receptacles are placed in the supercooling device, the transfer material pieces of different receptacles should not be in contact and placed accordingly.
The supercooling device 11 can also include at least one magnet 42 a, b, such as an electromagnet, a permanent magnet, or a combination of magnets, to generate an oscillating magnetic, electric or electromagnetic field for application to the object. Time-varying magnetic fields can be used to create electric fields and vice-versa. The magnets 42 a, b can be positioned adjacent to one or more sides of the repository 40, or can be affixed to the repository itself or the housing in which the repository is placed. In a further embodiment, the magnets can be remotely located from the repository and the field emitted from the magnets 42 a, b can be applied to the food item 44 via one or more transducers.
Further, at least one closed-loop monitoring sensor 41 can be provided adjacent to the repository on one or more sides. Alternatively or in addition, a sensor can be affixed to the housing, on an interior surface, in which the repository is placed for supercooling. The monitoring sensors can include imaging and reflective sensors, electrocurrent sensors, chemical sensors, electric sensors, acoustic sensors, optical sensors, electrochemical sensors, thermal sensors and imagers, and hyperspectral sensors. However, other types of sensors are possible. Data collected via the sensors can be used to monitor characteristics of the object during application of the fields and change the values of the field parameters, as part of a feedback process to control nucleation during supercooling.
An electrical control unit 45 can be a processor that is interfaced to the sensors 41, magnets 42 a,b, and electrodes 43 a,b to communicate during the feedback process. Specifically, the processor can determine an identity of or classify an object for supercooling based on measurements from the sensors 41, as well as identify parameters for the field to be applied based on the identity or classification. The processor 45 can also instruct the sensors 41 to measure characteristics of the object undergoing supercooling and in turn, receive the measured values as feedback for determining if new parameters of the field are needed and if so, values of the parameters. Based on the feedback from the sensors, the processor can communicate the new parameter values for the magnets and electrodes, to change the field applied to the object for changing the supercooling conditions.
In a further embodiment, the processor 45 can obtain data from the sensors, electrodes, and magnets for providing, via a wireless transceiver included in the device, to a cloud-based server for determining an identity or classification of the object, determining initial parameters for the field, and identifying new field parameters for adjusting the field. When performed in the cloud, the data set of object identities and classifications, initial values for the field parameters, and guidelines for adjusted parameters can be utilized by users of different devices. In contrast, when the processor of the supercooling device performs such actions, the data sets are specific to that supercooling device.
The components of the feedback device can vary in size depending on the food item to be supercooled. For large objects, the tray can be larger, as well as the magnets, while the electrodes may be placed further apart from one another due to the larger size of the objects or more electrodes may be used than for smaller objects. Further, a housing of the feedback device can also be dependent on the size of the components and the object.
Additionally, a size of the electrode interfacing receptacle, size of the transfer material, and configuration of the transfer and non-transfer materials can also depend on a size of the food item to be supercooled. For example, larger food items, such as a whole salmon requires a larger receptacle than a single chicken breast. Due to the larger size of the salmon, larger pieces or more pieces of transfer material may be used in the receptacle for the salmon than for the chicken breast. In one embodiment, around 80% of the food item should be covered by transfer material to ensure that the entire food item is supercooled in an even manner; however, other percentages of transfer material to food item are possible.
Different configurations of the transfer material may be desirable based on different types and shapes of food items.
When two or more pieces of transfer material are used, one side of the receptacle bag can include one or more pieces of transfer material 52, each piece surrounded by non-transfer material 51. A shape and size of the transfer material can vary and can include a strip, rectangle, square, circle, or other shape. The other size of the receptacle bag can include one or more pieces of transfer material 52, each surrounded by non-transfer material 51 in the same or different configuration of the transfer and non-transfer materials of the first side.
The two sides of the receptacle bag can be affixed to one another on three of four sides with an adhesive, such as glue, or fused together, such as via heat, to form an opening on the unadhesed side. Other means for affixing the two sides together are possible. The open side of the receptacle bag can include a closure and tabs for opening the bag. The closure 53 can include male and female sides that fit together when in a closed position and can be sealed using a moveable tab, like a zipper, or when pressed together. Other types of closures 53 are possible. On one side of the closure 53, opposite the transfer and non-transfer materials, can be a tab 54 affixed to each side of the closure to allow a user to open the receptacle bag.
As described above, different types of transfer material can be included, including metal, aluminum, tin, and organic semiconductors. Depending on the type, the transfer material can be transparent so the enclosed food item is visible. Similarly, the non-transfer material can also be transparent depending on the type of material used. Types of non-transfer material can include plastic, silicone, insulating dielectrics, doped semiconductors whose conductivity has been modified to make it non-conducting (e.g., indium tin oxide). Both the transfer and non-transfer material should be food grade safe.
In one embodiment, the transfer material can be elastic or stretchy to conform to the food item to prevent different transfer material pieces from touching. However, the non-transfer material should be fairly sturdy to provide structure to the bag and prevent the surrounding pieces of transfer material from touching. In a further embodiment, a shape of the bag can be conformable, such that the bag conforms to the food item based on an increase or decrease in surrounding temperature. For example, transfer material made of elastic or polymer can be engineered to become more conformable as the temperature of the bag increases or decreases. For supercooling, the transfer material can become more conformable as the temperature decreases. Thus, the transfer material can conform to an unknown shape based on the food item and temperature of the material. Further, the temperature of the bag can be independent of the temperature of the food inside the bag. Shape memory material can also be used to conform to the food object during supercooling.
In a further example, the electrode interfacing receptacle can be in the shape of a box.
The entire receptacle cannot be made of transfer material since one or more areas of infinite impedance are required so the current is passed completely through the food item. However, one or more entire sides of the receptacle can be transfer material.
The transfer material can also be included in the electrode interfacing receptacle in different shapes.
The cross-like shape of the transfer material can also be used on the electrode interfacing receptacle when in box form.
The transfer material can also continue around multiple sides of the electrode interfacing receptacle, rather than remain solely on one or more individual sides, as described above.
In a different embodiment,
Alternatively, the two strips of transfer material do not extend from one side to another.
Rather than a receptacle for housing the food item, the transfer material can be placed on the food time, like foil, to act as a barrier between the food item and electrodes.
Non-transfer material can also be used in the roll.
While the description above focuses on an electrode interfacing receptacle for food or beverage items, the receptacle can also be used for organs or other objects that are sensitive to contamination. For example, the receptacle can be sterilized for holding and preserving an organ until transplant. The receptacle can also be used for other objects, including, raw, preserved or cooked foods, blood, embryos, vaccines, probiotics, medicines, sperm, tissue samples, plant cultivars, cut flowers and other plant materials, biological samples of plants, animal, microbial, and fungal materials, non-biologicals, such as hydrogel materials, material that can be impacted by water absorption, such as textiles, nylons and plastic lenses and optics, fine instruments and mechanical components, heat exchangers, and fuel, as well as carbonated beverages as described in commonly-assigned U.S. patent application, entitled “System and Method for Feedback-Based Beverage Supercooling,” Ser. No. ______, filed Jul. 28, 2022, pending; ice as described in commonly-assigned U.S. patent application, entitled “System and Method for Controlling Crystallized Forms of Water,” Ser. No. ______, filed Jul. 28, 2022, pending; organic items as described in commonly-assigned U.S. patent application, entitled “System and Method for Feedback-Based Nucleation Control,” Ser. No. ______, filed Jul. 28, 2022, pending and commonly-assigned U.S. patent application, entitled “Feedback-Based Device for Nucleation Control,” Ser. No. ______, filed Jul. 28, 2022, pending, colloids as described in commonly-assigned U.S. patent application, entitled “System and Method for Feedback-Based Colloid Phase Change Control,” Ser. No. ______, filed Jul. 28, 2022, pending; agriculture as described in commonly-assigned U.S. patent application, entitled “System and Method for Controlling Cell Functioning and Motility with the Aid of a Digital Computer,” Ser. No. ______, filed Jul. 28, 2022, pending; meat as described in commonly-assigned U.S. patent application, entitled “System and Method for Controlling Cellular Adhesion with the Aid of a Digital Computer,” Ser. No. ______, filed Jul. 28, 2022, pending; and food as described in commonly-assigned U.S. patent application, entitled “System and Method for Metamaterial Array-Based Field-Shaping,” Ser. No. ______, filed Jul. 28, 2022, pending the disclosures of which are incorporated by reference.
While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope of the invention.