The present invention relates to an electrical switch comprising a housing with a support member, a rocker arm pivotally coupled to the support member for movement about an axis A, a first terminal coupled to the housing, and a lever pivotally coupled to the housing for pivotal movement about an axis B. The rocker arm includes a first member located on a first side of the pivot axis A, a second member on a second side of the pivot axis A, and a first movable contact coupled to the first member. When the lever is pivoted in a first direction, it engages the first member on the rocker arm to move the first movable contact away from the first terminal contact and to scrape debris from the first movable contact and the first terminal contact while providing electrical connection between the first movable contact and the first terminal contact. When the lever is pivoted in a second direction, it engages the second member on the rocker arm to move the first movable contact into a sliding engagement with the first terminal contact.
Conventional electrical switches generally have first and second movable contacts connecting to terminal contacts are widely used. In certain situations where the switches are operating at low current loads or in unclean environments, performance of the switches has been negatively affected. There is a buildup of debris on the movable and fixed contacts that forms over time due to various factors. With some switches, the continual opening and closing of switches causes contaminants to fuse onto the contact surfaces. Over time, as the amount of debris and contaminants disposed on the surfaces increases, the performance of the switch decreases.
Accordingly, a need exists for an electrical switch having the ability to eliminate debris on its contacts at an angle suitable for the contacts to effectively transport electrical current therebetween.
Accordingly, an object of the present invention is to provide an electrical switch having at least one fixed contact and at least one movable contact such that the movable contact engages the fixed contact upon the pivotal movement of a lever upon a rocker arm.
Another object of the invention is to provide an electrical switch having at least one movable contact disposed at a certain angle with respect to the rocker arm such that when the rocker arm pivots, the movable contact separates from the fixed contact at an angle adapted to eliminate debris.
A further object of the invention is to provide a rocker arm having barriers along its surface to control the pivot range of the lever.
Still another object of the invention is to provide a handle with a spring-loaded lever for maintaining a plunger in constant contact with the rocker arm.
Yet another object of the invention is to provide a second fixed contact and a second movable contact such that when the first fixed contact engages the first movable contact creating a closed connection, the second fixed contact and second movable contact are unattached, thus creating an open connection for the flow of electrical current.
The foregoing objects are basically attained by providing an electrical switch comprising a housing with a support member, a rocker arm pivotally coupled to the support member for movement about an axis A, a first terminal coupled to the housing, and a lever pivotally coupled to the housing for pivotal movement about an axis B. The rocker arm includes a first member located on a first side of the pivot axis A, a second member on a second side of the pivot axis A, and a first movable contact coupled to the first member. The lever is pivoted in a first direction to engage the first member on the rocker arm to move the first movable contact away from the first terminal contact to scrape debris from the contact surfaces. The lever is pivoted in a second direction to engage the second member on the rocker arm to move the first movable contact into a sliding engagement with the first terminal contact.
By forming the electrical switch in this manner, the movable contacts attached to the rocker arm and the fixed contacts adjacent to the terminals are engaged at an angle such that the frictional forces upon separation cause a scraping of the contact surfaces which eliminates any debris or contaminants present on the contact surfaces.
As used in this application, the terms “top”, “bottom”, and “side” are intended to facilitate the description of the electrical switch, and are not intended to limit the description of the electrical switch to any particular orientation.
Other objects, advantages, and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the invention.
Referring to the drawings which form a part of this disclosure:
Throughout the drawings, like reference numerals will be understood to refer to like parts, components, and structures.
Turning to
The housing 12 is substantially rectangularly shaped, as seen in
Both of the terminals 50, 56 are resilient members secured to opposing sides of the housing 12 by internal housing support walls with terminal screws 32 threaded thereon. Their resiliency allows for a slight degree of movement of the terminal contacts 30, 34 if necessary, upon engagement with the movable contacts 26, 28.
As seen in
The rocker arm 16 is pivotally coupled to the support member 14 for pivotal movement about axis A. Upon pivotal movement of the rocker arm 16, one of the first and second movable contacts 26, 28 elevates from the bottom of the housing 12 and the other of the first and second movable contacts 26, 28 descends towards the bottom of the housing 12. As seen in
As illustrated in
The first and second barriers 46, 48 are substantially U-shaped tabs stamped from the rocker arm 16 with the first barrier 46 cut from the surface of the first member 18 and the second barrier 48 cut from the surface of the second member 22. The first and second barriers 46, 48 are acutely angled towards the first and second members 18, 22, respectively and are adapted to prevent the plunger 40 from pivoting across the entire distance between the first and second members 18, 22. Thus, the barriers 46, 48 form stops or walls along the surface of the rocker arm 16.
The rocker arm 16 further includes a concave surface portion 62 adjacent to the notches 60 and between the barriers 46, 48 adapted for receiving the plunger 40 of the lever 36.
The outer ends of the rocker arm 16 include first and second movable contacts 26, 28 disposed along the outer ends of the first and second sides 20, 24 on the opposite side of the cam surface as the side upon which the barriers 46, 48 are located. The first movable contact 26 is coupled to the first member 18 and the second movable contact 28 is coupled to the second member 22.
The housing 12 further includes a lever 36 pivotally coupled thereto for pivotal movement about axis B. More specifically, the lever 36 is pivotally supported by the support member 14 because the width of the lever 36 at its bottom or second end 68 is equivalent to approximately the same distance as the space between each of the notches 60. As seen in
The handle 64 is a substantially rectangularly-shaped planar surface oriented parallel to the support member 14. This style is commonly known as a toggle switch and is prevalent in commercial and residential lighting applications. In an alternative embodiment seen in
The handle 64 activates the mechanism to alternately complete or break the electrical circuit. For purposes of illustration and description, although the switch illustrated represents a three-way switch and either set of engaged contacts could represent an “on” or “off” position, in this section,
The plunger 40 is curved to easily slide along the bottom end 68 of the lever 36 adapted for pivoting through the rocker arm concave surface portion 62. The spring 38 is compressed or extended between the plunger 40 and the handle 64 depending on the position of the plunger 40 with respect to the concave surface portion 62. The spring 38 exerts a force between the handle 64 and the plunger 40 such that the plunger 40 is adapted to pivot about the pivot axis B along the rocker arm 16 through the concave surface portion 62 between the first and second barriers 46, 48. The lever 36 is spring-loaded to maintain the plunger 40 in constant contact with the rocker arm 16.
Pivot axis B is parallel to pivot axis A and is located towards the second end 68 of the lever 36 adjacent to the rocker arm 16. When the lever 36 is activated, it pivots about pivot axis B as the plunger 40 engages the rocker arm 16 and, thus, the position of the plunger 40 is controlled by a pivotal position of the lever 36 about the pivot axis B.
Operation
Essentially, the operation of the switch 10 is best illustrated in reference to
The rocker arm 16 controls the orientation of the movable contacts 26, 28 with respect to the terminal contacts 30, 34 to create a first shear position which is the angle of engagement between the first terminal contact 30 and the first movable contact 26. Prior to actual shearing of the contacts 26, 30, the first terminal contact 30 and the first movable contact 26 are engaged when the first movable contact 30 is approximately 150° measured from the horizontal in the direction away from the second member 22. At this angle, the opposing second terminal contact 34 and the second movable contact 28 are at the furthest distance from each other which opens the circuit. This orientation removes current from the circuit to a light source. A person of reasonable skill in the art would understand that the angular displacement does not have to equal 150° so long as the contacts are attached when the plunger 40 slides across the rocker arm 16 and the opposing contacts are separated so current flows therethrough.
From the ON position of
More specifically, the rocker arm 16 pivots along the axis A while balancing on the support member 14 to elevate the second movable contact 28 from the bottom of the housing 12 towards the second terminal contact 34, as seen in
Further, when the plunger 40 moves towards the first side 20, the rocker arm 16 moves in an opposite direction such that the first movable contact 26 separates from the first terminal contact 30 and the second movable contact 28 simultaneously moves towards the second terminal contact 34 towards a second shear position (
Internally, with respect to the lever 36, when the plunger 40 is located directly between the first and second barriers 46, 48, i.e., the bottom tip of the plunger 40 contacts the rocker arm 16 at support member 14, the spring 38 is maximally compressed. When the plunger 40 is either disposed adjacent to the first barrier 46 or the second barrier 48, the spring 38 is fully extended. In this manner, the force of the spring 38 enables the lever 36 to pivot about the pivot axis B such that the rocker arm 16 pivots about the pivot axis A. This causes the second movable contact 28 to rise towards the second terminal contact 34 and the first movable contact 26 to descend away from the first terminal contact 30. Thus, the side to which the plunger 40 is disposed and therefore, the side to which the spring 38 is extended is the same side to which the respective movable contact and terminal contact are open.
As seen in
This removal enhances the electrical connection between the contact surfaces. A person of reasonable skill in the art would understand that the angular displacement does not have to be approximately greater than 10° and less than 30° so long as there is a horizontal and vertical component upon separation of the contacts. Nevertheless, the first movable contact 26 and the first terminal contact 30 are engaged at a non-zero angle when the first movable contact 26 is disposed approximately 150° from a horizontal axis prior to separation.
Prior to shearing of the second movable contact 28 and the second terminal contact 34 (as seen in
These shearing angles represent the positions prior to the vertical and horizontal movement of the movable contacts separating from the terminal contacts to cause a removal of debris from the surface therebetween. The first shear position represents the separation of the first movable contact 26 from the first terminal contact 30. The second shear position represents the separation of the second movable contact 28 from the second terminal contact 34.
To continue the ON/OFF power motion, the first movable contact 26 moves towards the first terminal contact 30 at a contact angle of 150° when the plunger 40 is disposed on the second side 24 of the rocker arm 16 and the first movable contact 26 moves away from the first terminal contact 30 when the plunger 40 is disposed on the first side 20 of the rocker arm 16. Likewise, the second movable contact 28 moves towards the second terminal contact 34 at a contact angle of 150° when the plunger 40 is disposed on the first side 20 of the rocker arm 16 and the second movable contact 28 moves away from the second terminal contact 34 when the plunger 40 is disposed on the second side 24 of the rocker arm 16.
While a particular embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
This application claims the benefit of U.S. Provisional Application 60/827,709 filed Sep. 30, 2006, which application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1700875 | Bell | Feb 1929 | A |
3243548 | Kjellman et al. | Mar 1966 | A |
3294932 | Barlow | Dec 1966 | A |
3596022 | Gaber et al. | Jul 1971 | A |
3879592 | Comerford et al. | Apr 1975 | A |
3935411 | Ford | Jan 1976 | A |
3989915 | Nishikawa | Nov 1976 | A |
4138602 | Eley | Feb 1979 | A |
4332991 | Nordstrom | Jun 1982 | A |
4352965 | Sorenson | Oct 1982 | A |
4490591 | Page | Dec 1984 | A |
D280615 | Beck et al. | Sep 1985 | S |
D280718 | Ohashi | Sep 1985 | S |
D280719 | Ohashi | Sep 1985 | S |
4632491 | Lutz | Dec 1986 | A |
4686339 | Sapone | Aug 1987 | A |
4689451 | Resh | Aug 1987 | A |
D296326 | Osika | Jun 1988 | S |
D296327 | Osika | Jun 1988 | S |
4777333 | Valenzona | Oct 1988 | A |
D299642 | Kamisada | Jan 1989 | S |
5158172 | Roeser et al. | Oct 1992 | A |
5329163 | Satoh et al. | Jul 1994 | A |
5391847 | Gallone | Feb 1995 | A |
5568860 | Stringwell et al. | Oct 1996 | A |
5967297 | Kaufman et al. | Oct 1999 | A |
6459060 | Bartok | Oct 2002 | B1 |
6534734 | Davis | Mar 2003 | B2 |
6559393 | Nishikawa | May 2003 | B2 |
6713696 | Skarlupka et al. | Mar 2004 | B1 |
6714108 | Simms et al. | Mar 2004 | B1 |
7049538 | Camillo | May 2006 | B2 |
20050006218 | Kwong | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080078667 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60827709 | Sep 2006 | US |