1. Field of the Invention
The present invention relates to circuit breakers, more particularly, relates to a contact module for circuit breaker with an asymmetric structure.
2. The Related Art
It is well known that a circuit breaker with dual breakpoint has a current breaking capacity which is much higher than a circuit breaker with single breakpoint. The circuit breaker with dual breakpoint utilizes modularized structure which results in convenient assembly and good insulation ability. However, dual breakpoint structure requires that each level of the circuit breaker comprise two contact modules. The contact modules shall have high strength since the circuit breaker will bear large breaking current and the contact modules will bear strong gas shock waves. A high strength requires that a housing of the contact module shall have sufficient thickness, so a phase spacing of the circuit break cannot be reduced. For circuit breakers with large current breaking capacities such as 100 A, 125 A or 160 A, a width dimension of the circuit breakers will be very large. However, miniaturization is a demand and trend for circuit breakers. It is obvious that there is a contradiction between the current breaking capacity and the dimension of a circuit breaker.
For example, an existing four-level circuit breaker with a current breaking capacity of 160 A has a width dimension of 120 mm and a spacing of 30 mm. Though the circuit breaker may bear a large current, the dimension of the circuit breaker is too large and will obviously constrain the application and installation of the circuit breaker.
The present invention discloses a contact module for circuit breaker considering both a current breaking capacity and a dimension of the contact module. By using an asymmetric structure and a single contact spring, the dimension of the contact module is reduced while maintaining the current breaking capacity.
According to an embodiment of the present invention, a contact module for circuit breaker is disclosed. The contact module comprises: a base, a cover, an operation mechanism, three kinds of single-pole switches and a release mechanism. The cover is mounted on the base to form an accommodation space, the operation mechanism, the three kinds of single-pole switches and the release mechanism are disposed in the accommodation space. The operation mechanism is connected to one kind of the single-pole switch, the release mechanism is connected to the three kinds of the single-pole switches. All of the three kinds of single-pole switches are asymmetrical. Each kind of single-pole switch comprises a strong side and a weak side, for each kind of single-pole switch, a contact housing on the strong side is thick and is connected to a thick shaft, a contact housing on the weak side is thin and is connected to a thin shaft. A rotor component in each kind of single-pole switch only has a single contact spring and the single contact spring is mounted on the weak side. Rotation shafts of adjacent single-pole switches are connected by a linkage shaft so that the single-pole switches are connected, a strong side of one single-pole switch is connected to a weak side of another single-pole switch.
In an embodiment, each kind of single-pole switch comprises a contact housing module assembled by two contact housings, a rotor component disposed in the contact housing module, two rotation shafts connecting the rotor component and the two contact housings. The assembled two contact housings form an internal chamber in which the rotor component is mounted, the contact housing on the strong side forms thick side walls of the internal chamber and the contact housing on the weak side forms thin side walls of the internal chamber. The thick shaft cooperates with the thick side walls of the internal chamber formed by the contact housing on the strong side, and a strong side lug is provided. The thin shaft cooperates with the thin side walls of the internal chamber formed by the contact housing on the weak side, and a weak side lug is provided.
In an embodiment, the strong side lug is step-shaped, the weak side lug is inclined.
In an embodiment, the three kinds of single-pole switch comprises a first single-pole switch, a second single-pole switch and a third single-pole switch. Two first single-pole switches act as N phase and A phase of the contact module. The operation mechanism is connected to the second single-pole switch, the second single-pole switch acts as B phase of the contact module. The third single-pole switch acts as C phase of the contact module.
In an embodiment, the first single-pole switch comprises a first contact housing, a second contact housing, a first rotation shaft, a second rotation shaft, a first rotor component, a static contact and an arc extinguishing chamber. The first contact housing is a strong side contact housing and the second contact housing is a weak side contact housing, the first contact housing and the second contact housing are assembled to form an internal chamber, which accommodates the first rotor component, the static contact and the arc extinguishing chamber. The first rotation shaft is a thick rotation shaft and cooperates with the first contact housing, the second rotation shaft is a thin shaft and cooperates with the second contact housing, the first rotation shaft does not extend outside the first contact housing, the second rotation shaft extends outside the second contact housing.
In an embodiment, the second single-pole switch comprises a third contact housing, a fourth contact housing, a first rotation shaft, a third rotation shaft, a second rotor component, a static contact and an arc extinguishing chamber. The third contact housing is a weak side contact housing and has a symmetric structure with respect to the second contact housing, the fourth contact housing is a strong side contact housing and has a symmetric structure with respect to the first contact housing, the third contact housing and the fourth contact housing are assembled to form an internal chamber, which accommodates the second rotor component, the static contact and the arc extinguishing chamber, the second rotor component has a symmetric structure with respect to the first rotor component. The first rotation shaft cooperates with the fourth contact housing, the third rotation shaft is a thin shaft and cooperates with the third contact housing, the third rotation shaft does not extend outside the third contact housing, and the first rotation shaft does not extend outside the fourth contact housing.
In an embodiment, the third single-pole switch comprises a third contact housing, a fourth contact housing, a first rotation shaft, a second rotation shaft, a second rotor component, a static contact and an arc extinguishing chamber. The third contact housing is a weak side contact housing and has a symmetric structure with respect to the second contact housing, the fourth contact housing is a strong side contact housing and has a symmetric structure with respect to the first contact housing, the third contact housing and the fourth contact housing are assembled to form an internal chamber, which accommodates the second rotor component, the static contact and the arc extinguishing chamber, the second rotor component has a symmetric structure with respect to the first rotor component. The first rotation shaft cooperates with the fourth contact housing, the second rotation shaft cooperates with the third contact housing, the first rotation shaft does not extend outside the fourth contact housing, the second rotation shaft extends outside the third contact housing.
The present invention utilizes an asymmetric structure. For a single-pole switch, the thickness of side walls on one side of the housing is reduced and only a single contact spring is used in a rotor component. A dimension of a contact module is reduced while maintaining the strength of the contact module and a current breaking capacity of the circuit breaker.
The above and other features, natures, and advantages of the invention will be apparent by the following description of the embodiments incorporating the drawings, wherein:
The present invention utilizes an asymmetric contact module, where a rotor component in the contact module only includes a single contact spring. Side walls on different sides of the contact module have different thicknesses. A thickness of a single-pole switch is reduced while maintaining the strength of the contact module at a desired level. An overall width dimension of a circuit breaker including connected contact modules may be reduced.
As shown in
The cover 102 is mounted on the base 101 to form an accommodation space. The operation mechanism 103, the three kinds of single-pole switches and the release mechanism 104 are disposed in the accommodation space. The operation mechanism 103 is connected to one kind of the single-pole switch. The release mechanism 104 is connected to all the three kinds of the single-pole switches. All of the three kinds of single-pole switches are asymmetrical, each kind of single-pole switch comprises a strong side and a weak side. For each kind of single-pole switch, a contact housing on the strong side is thick and is connected to a thick shaft, while a contact housing on the weak side is thin and is connected to a thin shaft. A rotor component in each kind of single-pole switch only has a single contact spring and the single contact spring is mounted on the weak side. Rotation shafts of adjacent single-pole switches are connected by a linkage shaft so that the single-pole switches are connected. A strong side of one single-pole switch is connected to a weak side of another single-pole switch.
Each kind of single-pole switch comprises a contact housing module assembled by two contact housings, a rotor component disposed in the contact housing module, and two rotation shafts connecting the rotor component and the two contact housings. The assembled two contact housings form an internal chamber in which the rotor component is mounted. The contact housing on the strong side forms thick side walls of the internal chamber and the contact housing on the weak side forms thin side walls of the internal chamber. The thick shaft cooperates with the thick side walls of the internal chamber formed by the contact housing on the strong side, and a strong side lug is provided. The thin shaft cooperates with the thin side walls of the internal chamber formed by the contact housing on the weak side, and a weak side lug is provided.
According to the present invention, four kinds of contact housings are provided, including a first contact housing 201, a second contact housing 202, a third contact housing 203 and a fourth contact housing 204. The first contact housing 201 and the second contact housing 202 are matched and assembled, while the third contact housing 203 and the fourth contact housing 204 are matched and assembled. The first contact housing 201 and the fourth contact housing 204 have relatively symmetric structures, the first contact housing 201 and the fourth contact housing 204 are strong side contact housings and have thick side walls. The second contact housing 202 and the third contact housing 203 have relatively symmetric structures, the second contact housing 202 and the third contact housing 203 are weak side contact housings and have thin side walls. In an assembled contact housing module, an internal chamber is not positioned in the middle, but will deviate to the weak side.
The present invention provides two kinds of rotor components.
As shown in
The rotor support 302 comprises two side plates 321 and two lateral shafts 322 that connect the two side plates. The two side plates 321 are uniform in shape and size, the two side plates 321 have a gap therebetween which is sufficient for the contact bridge 308 to pass through. The two lateral shafts 322 are centrosymmetric. Each side plate is provided with a central hole 331 in the center, and each side plate is provided with a pair of centrosymmetric linkage holes 332 and a pair of centrosymmetric connection slots 334. The pair of linkage holes 332 are disposed on two ends of the major axis of the side plate respectively, and the pair of the connection slots 334 are disposed on two ends of the minor axis of the side plate respectively. The central holes 331 on the two side plates 321 are aligned, the linkage holes 332 on the two side plates 321 are aligned, and the connection slots 334 on the two side plates 321 are aligned, so that the shafts may pass through the holes or slots.
Two first connection rods 306 are mounted between the two side plates 321 and are arranged on different sides of the contact bridge 308. A first connection rod 306 is provided with a short shaft 363, which is mounted in the connection slot 334. The short shaft 363 is the rotation center of the first connection rod 306.
Two second connection rods 307 are mounted between the two side plates 321 and are arranged on different sides of the contact bridge 308.
The contact bridge 308 is centrosymmetric in cross section. The contact bridge is provided with an obround hole 382 in the center, the first shaft 303 passes through the obround hole 382 and slides therein along a longitudinal direction of the obround hole. The first shaft 303 is the rotation center of the contact bridge 308 when the first shaft 303 slides to one end of the obround hole. The contact bridge is provided with a pair of centrosymmetric curved surfaces 381 and a pair of centrosymmetric through holes 383. Two curved surfaces 381 cooperate with two lateral shafts 322 to constrain the rotation range of the contact bridge 308. Two third shafts 305 pass through two through holes 383 respectively. The contact bridge 308 is provided with two contact points on each side, the two contact points are welded to a contact. The longitudinal direction of the obround hole 382 and a line connecting the two contact points form an included angle, which keeps balance of the contact pressure of the contact points on both sides of the contact bridge 308.
The first shaft 303 passes through the obround hole 382 on the contact bridge 308 and the central hole 331 on the side plate 321. The first shaft 303 cooperates with the central hole 331 by means of a minuteness gap. Two second shafts 304 respectively pass through the first connection rod 306 and the second connection rod 307 and are mounted on profile of the two side plates 321. The two second shafts 304 are arranged centrosymmetrically. The side plate 321 is provided with a groove slot 335. The second shaft 304 passes through the first shaft hole 364 on the first connection rod 306 and the second shaft hole 371 on the second connection rod 307. The second shaft 304 is mounted on the groove slot 335. The second shaft 304 cooperates with the first shaft hole 364 and the second shaft hole 371 by means of minuteness gaps respectively.
Two third shafts 305 respectively pass through the through hole 383 on the contact bridge and the second connection rod 307. The two third shafts 305 are arranged centrosymmetrically. The third shaft 305 passes through the third shaft hole 372 on the second connection rod 307. The third shaft 305 cooperates with the third shaft hole 372 by means of a minuteness gap.
Two ends of the single contact spring 309 are mounted on two second shafts 304 respectively. The rotor support 302 is further provided with a spring slot on both side plates 321. The contact spring 309 is able to move in the spring slot. For the second rotor component 300, the single contact spring 309 is arranged in the spring slot on the left side plate 321 (the “left” means the “left side” according to
The present invention provides three kinds of rotation shafts. The three kinds of rotation shafts match with different contact housings respectively. A first rotation shaft 501 is a thick rotation shaft, which cooperates with the first contact housing 201 or the fourth contact housing 204. The first rotation shaft 501 cooperates with the first contact housing 201 or the fourth contact housing 204 via the strong side lug, which is step-shaped. The second rotation shaft 502 and the third rotation shaft 503 are thin rotation shafts. The second rotation shaft 502 or the third rotation shaft 503 cooperates with the second contact housing 202 or the third contact housing 203 via the weak side lug, which is inclined. A difference between the second rotation shaft 502 and the third rotation shaft 503 is the length. The second rotation shaft 502 is long so that the second rotation shaft 502 extends outside the contact housing. The third rotation shaft 503 is short and does not extend beyond the contact housing. All of the first rotation shaft 501, the second rotation shaft 502 and the third rotation shaft 503 can be connected to a linkage shaft so as to interconnect the single-pole switches.
The present invention provides three kinds of single-pole switches via combinations of the four kinds of contact housings, two kinds of rotor components and three kinds of rotation shafts.
As shown in
According to the contact module for circuit breaker of to the present invention, an operation mechanism controls the close/open status of the circuit breaker. When the circuit breaker is closed, current flows through a static contact on one side, a rotor component, a static contact on the other side and a release mechanism in sequence. The release mechanism protects the circuit breaker by opening the circuit breaker when the system is overload for a longtime or abnormal current appears in the system.
The contact module for circuit breaker of to the present invention uses asymmetric structure and a single contact spring, so that a width dimension of a multilevel circuit breaker formed by cascading of a plurality of single-pole switches will be reduced significantly. For example, a four-level circuit breaker according to the present invention has a width dimension of 100 mm and a spacing of 25 mm, a short circuit breaking capacity of the circuit breaker is 400V, 150 KA. According to prior art, when provided with a same short circuit breaking capacity, a four-level circuit breaker in prior art will have a width dimension of 120 mm and a spacing of 30 mm, which is 20% larger than that of the present invention. The reason is that symmetric structure and dual contact springs are used in prior art.
The present invention utilizes an asymmetric structure. For a single-pole switch, the thickness of side walls on one side of the housing is reduced and only a single contact spring is used in a rotor component. A dimension of a contact module is reduced while maintaining the strength of the contact module and a current breaking capacity of the circuit breaker.
The above embodiments are provided to those skilled in the art to realize or use the invention, under the condition that various modifications or changes being made by those skilled in the art without departing the spirit and principle of the invention, the above embodiments may be modified and changed variously, therefore the protection scope of the invention is not limited by the above embodiments, rather, it should conform to the maximum scope of the innovative features mentioned in the Claims.
Number | Date | Country | Kind |
---|---|---|---|
201310438970.5 | Sep 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/086918 | 9/19/2014 | WO | 00 |