Contact over-torque with three-dimensional anatomical data

Information

  • Patent Grant
  • 8369934
  • Patent Number
    8,369,934
  • Date Filed
    Tuesday, July 6, 2010
    13 years ago
  • Date Issued
    Tuesday, February 5, 2013
    11 years ago
Abstract
A method is provided for establishing contact of a medical device against a three-dimensional surface geometry within a subject body, the method comprising obtaining a three-dimensional tissue surface geometry of an anatomical region within the subject body, obtaining a target location on the surface for the device to contact, determining local surface geometry information in a neighborhood of the target location, and using this information to determine a change of at least one control variable for effecting an over-torque of the medical device to enhance contact of the device with the target surface.
Description
FIELD OF THE INVENTION

This invention relates to control of medical devices in a subject body, and more particularly to placement of medical devices in a target location of the subject body.


BACKGROUND OF THE INVENTION

Interventional medicine is the collection of medical procedures in which access to the site of treatment is made through one of the patient's blood vessels, body cavities or lumens. For example, electro-physiology mapping of the heart is most often performed using a catheter which may be inserted into a patient's arterial system through a puncture of the femoral artery in the groin area. Other interventional medical procedures include assessment and treatment of tissues on the inner surfaces of the heart (endocardial surfaces) accessed via peripheral veins or arteries, treatment of vascular defects such as cerebral aneurysms, removal of embolic clots and debris from vessels, treatment of tumors via vascular access, endoscopy of the intestinal tract, etc.


Interventional medicine technologies have been applied to manipulation of instruments which contact tissues during surgical procedures, making these procedures more precise, repeatable and less dependent of the device manipulation skills of the physician. Some presently available interventional medical systems for directing and manipulating the distal tip of a medical device by actuation of the distal portion of the device use computer assisted navigation and an imaging system for providing imaging of the device and blood vessels and tissues. Such systems can control the navigation of a medical device, such as a catheter, to a target destination in an operating region using a computer to orient and guide the distal tip through blood vessels and tissue. In some cases, when the computed direction for reaching the target destination is determined and the medical device is extended, it is desired to establish sufficient contact of the medical device with the intended target location on the three dimensional tissue surface. Adequate contact with the tissue surface within the subject body is important, for instance, in the analysis and treatment of cardiac arrhythmias. A method is therefore desired for controlling movement of a medical device that will establish adequate contact with the target tissue surface and will allow for treatment of the targeted area.


SUMMARY OF THE INVENTION

The method and apparatus of the present invention facilitates the placement of the distal end of a medical device, such as a catheter or microcatheter, against a target location on a three-dimensional curved surface within a subject body. Generally, the present invention comprises a method for establishing contact of a medical device against a three-dimensional surface geometry within a subject body, the method comprising obtaining a three-dimensional tissue surface geometry of a location within the subject body, identifying a desired target location on the surface, computationally determining at least one point spaced from the desired target, stepping a minimum distance from the at least one point to determine whether an image threshold is crossed, and determining a change of at least one control variable for effecting an over-torque of a medical device to enhance contact of the device with the target surface.


In one aspect of the present invention, a three-dimensional surface geometry is suitably rendered in an image model and registered with a known location within the subject body. The model may be used to perform a stepping process to determine if an image surface threshold is crossed, and to determine at least one control variable that may be changed to effect a movement of a virtual or real medical device. The image model of the three-dimensional surface geometry and medical device may be used to predict over-torque of the real or virtual medical device corresponding to the control variable.


In another aspect of the present invention, at least some embodiments of a method provide for determining an over-torque magnetic field to be applied to a medical device to establish adequate contact of the medical device against the target surface of the subject body. In one embodiment, the method allows the user to identify the desired location on an image of the body, which is used to determine an appropriate over-torque rotation corresponding to the local surface geometry at the target location. These and other features and advantages will be in part apparent, and in part pointed out hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a curved three dimensional tissue surface and a medical device held in contact with the surface through the over-torque method in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

In a preferred embodiment of the present invention, a method for establishing contact over-torque of the tip of a medical device against a tissue surface within a subject body is provided in accordance with the principles of the present invention. In one embodiment, the method provides for enhancing contact of a medical device with a tissue surface such as the heart, through the suitable application of an over-torque magnetic field. While this embodiment is operable with magnetically navigable medical devices, other embodiments of a method in accordance with the present invention may be used with medical devices that are guided without magnetic navigation but instead use other control methods for remote navigation such as mechanical actuation, electrostrictive actuation, or hydraulic actuation. The method for establishing contact of a medical device against a surface within a subject body comprises obtaining a three-dimensional tissue surface geometry of a region within the subject body, identifying a desired target location on the surface, defining at least one point spaced from the desired target, computationally stepping a minimum distance from the at least one point to determine whether an image threshold is crossed, and determining a change of at least one control variable for effecting an over-torque of a medical device to enhance contact of the device with the target surface.


A medical device such as a catheter may be navigated to the interior of a subject body of a patient by various means, including but not limited to magnetic navigation. Once the medical device has been navigated to a target surface of the body, such as a heart wall, the contact of the medical device against the tissue may be enhanced by suitably over-torquing the medical device against the tissue surface. A virtual representation of the medical device may be suitably rendered in a three-dimensional model of the surface geometry, and the method may then be used to determine a change to a control variable for affecting an over-torque of the medical device against the surface tissue. Such virtual modeling of the medical device may be used to predict the over-torque of the medical device prior to movement of the actual medical device. Where the medical device is a magnetically navigable medical device, the over-torque may be applied through the application of a magnetic field. Where a magnetically navigable medical device is used, for example, this may be accomplished by applying a magnetic moment in a direction that provides the maximum over torque (i.e., leads the orientation of the catheter tip by an angle of approximately 90° as measured about an axis that is normal to the plane defined by the catheter tip orientation and the local surface normal). This over-torque may be used to enhance contact with the tissue to obtain improved electro-physiology electrical readings, or to apply improved ablation treatment. A suitable over-torque of the magnetic field and the medical device depends on the local surface geometry of the target location within the body. In the following we shall describe the particular case when magnetic field actuation is used to remotely navigate the medical device, as a non-limiting example of an actuation method. Other actuation techniques could be employed as would be familiar to persons skilled in the art of remote surgical navigation.


Referring to FIG. 1, the tissue surface 20 of a three dimensional object in a subject body is represented by curve having a tangential plane p and an outward unit normal vector {right arrow over (n)} at a target location point {right arrow over (x)}0 (indicated at 22). The local surface geometry of the surface may be obtained from a three-dimensional pre-operative image of the anatomy, or from geometric mapping and anatomical 3D reconstruction that may be performed by reconstructing an interpolated anatomical surface based on endocardial surface locations that have been visited with a catheter device and a localization system that is suitably registered with the computer-controlled navigation system. Since the three-dimensional data of the surface is available, the unit normal vector {right arrow over (n)} at the target location may be determined from this data. The tip of a virtual medical device 24, or the tip of the actual medical device where localization data is available, is positioned against the tissue surface 20 near the target location, and a unit tangent vector (device tip orientation) at the tip of the virtual medical device 24 is defined as {right arrow over (t)}. The unit vector corresponding to the orientation of the medical device base is defined as {right arrow over (u)} shown at 28 in FIG. 1. With the medical device positioned against the surface 20, the field vector of the magnetic navigation system is also defined as {right arrow over (B)}0. An orthogonal vector {right arrow over (a)} is defined as {right arrow over (a)}′={right arrow over (t)}×{right arrow over (n)}, and suitably normalized







a


=




a








a
_






.






Next, a vector {right arrow over (c)} (indicated at 30) that is orthogonal to unit normal vector {right arrow over (n)} is defined as {right arrow over (c)}={right arrow over (n)}×{right arrow over (a)}, such that {right arrow over (a)} and {right arrow over (c)} span the local tangent plane p at point {right arrow over (x)}0. Then, two points indicated at 32 and 34 are defined as:


{right arrow over (x)}1={right arrow over (x)}0−l{right arrow over (c)}, and


{right arrow over (x)}2={right arrow over (x)}0l{right arrow over (c)}, where the distance/is approximately 4 to 7 millimeters.


Next, starting from {right arrow over (x)}1, incremental steps in the −{right arrow over (n)} direction are made (computationally) at an increment of about 1-5 millimeters. The incremental step is made in association with a three-dimensional image model of the surface geometry, which may determine whether the incremental step results in an image threshold crossing. The above distances are suitable for applications of determining the curvature of certain surfaces such as the interior of a heart. It should be noted that the above distances and increments are exemplary in nature, and may be varied for a variety of applications. If an image intensity threshold crossing of the surface occurs during the stepping process (e.g. the intensity value changes from a low value to a high value), the surface is locally positively curved in the device deflection plane. If no intensity threshold crossing of the surface occurs, the surface is locally negatively curved in approximately the device deflection plane. This can be confirmed by incrementally stepping in the −{right arrow over (n)} direction starting from {right arrow over (x)}2, to confirm the absence of any image threshold crossings at {right arrow over (x)}2.


In one preferred embodiment of the present invention, if there is no occurrence of an image intensity threshold crossing, the vector a (defined above) is redefined and set equal to the vector u defining the base of the medical device: {right arrow over (a)}←{right arrow over (u)}. In a second preferred embodiment, the vector c is used to redefine a: a←c. In a third preferred embodiment, the principal directions of curvature of the surface at the target location are determined using the deviation of the shape of a local surface patch away from the local tangent plane as given by standard methods of differential geometry, and the principal direction v corresponding to the minimum signed curvature is used to redefine a: a←v.


As an illustrative non-limiting example of changing a control variable in order to enhance surface contact, we consider the case of magnetic navigation, where an externally applied magnetic field is used to actuate and generally control the configuration of a magnetically endowed medical device. Other actuation technologies could be used for the same purpose and in these other cases the change of control variable would be mapped suitably as could be determined by persons skilled in the art of the appropriate actuation technology with the help of the teachings contained herein.


In the case of magnetic navigation, in general the external magnetic field can be suitably oriented or rotated to optimize surface contact of the medical device with the local tissue surface. In order to determine the rotation of the medical device, the field vector will be rotated about the (rotation axis) vector {right arrow over (a)} (suitably defined in various embodiments as described above) by an angle θ to establish a new field vector defined as:

{right arrow over (B)}=R{right arrow over (a)}(θ){right arrow over (B)}0  (1)


These methods of the various embodiments generally ensure that the tip of the medical device either directly pushes out against the local tissue surface, or in cases where the surface curvature is not suitably optimal, pushes sideways against the surface in a direction of strongly positive curvature. In either case contact with the local surface position is enhanced and stabilized, which feature is helpful for instance when the tissue surface is in motion, as in the case of the endocardial surface.


If vector {right arrow over (a)}=(ax, ay, az), then a 3×3 skew-symmetric matrix can be defined as:









A
=

(



0



-

a
z





a
y






a
z



0



-

a
x







-

a
y





a
x



0



)





(
2
)







and the rotation matrix for rotating the device about axis a can be written as:

R{right arrow over (a)}(θ)=I3×3+sin θA+(1−cos θ)A2,  (3)

where I is the 3×3 identity matrix To determine the angle of rotation θ for the rotation matrix in equation (3), we initially determine the lag angle φ=cos−1({right arrow over (t)}·{right arrow over (B)}0). We can use θ≈(π/2−φ) as a reasonable assumption for a good value of θ. The tip of the medical device 24 may then be rotated according to the rotation matrix in equation (3) above. Alternatively, the angle θ can be defined or set by the user using a slider on a Graphical User Interface. The range of the slider could be limited in some embodiments, so that for example the slider range could correspond to rotation angles θ in the range (−30 degrees, 45 degrees) in one preferred embodiment. In alternate embodiments different slider ranges could be used. In one preferred embodiment the rotation angle is applied incrementally based on any rotation that has already been applied so that the total rotation angle measured from the original field configuration (corresponding to the catheter tip just touching the target location) is θ as determined by the slider setting. An example of the latter embodiment is the case when catheter tip localization (position and orientation) information is available. Given the desired angle of rotation that is thus determined, the magnet system is controlled to apply a magnetic field in a direction that provides the requisite over-torque such that catheter tip contact with the tissue surface is enhanced. Once the tip has established firm contact with the surface 20 and is not able to move further, the tip is not aligned with the field vector {right arrow over (B)}0. Thus, the lag between the field vector {right arrow over (B)}0 and the actual orientation of the tip can provide an indication that the tip of the medical device is in an over-torque contact with the surface 20. Likewise, where an imaging system is used, the prolapse or bend in the distal portion of the medical device 24 that can be seen in the acquired images, or the observation that the device tip has not changed position may also indicate that the tip has established an over-torque contact with the surface 20. The method of determining the rotation of the field vector automatically can also account for the lag angle and other physical properties of the medical device, as given above.


The advantages of the above described embodiment and improvements should be readily apparent to one skilled in the art, as to enabling over-torque of a medical device and thereby enhancing device-tissue contact against a three dimensional surface within a subject body when the device is controlled by a remote navigation system. The actual controls used by the remote navigation system could comprise actuation schemes employing any one or more of magnetic, mechanical, electrostrictive, hydraulic or other actuation means familiar to those skilled in the art. Additional design considerations may be incorporated without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited by the particular embodiment or form described above, but by the appended claims.

Claims
  • 1. A method for establishing contact of a magnetically navigable medical device against a three-dimensional target surface geometry within a subject body, the method comprising: obtaining a three dimensional geometry of a tissue surface of an anatomical region within a subject body;identifying a desired target location on the tissue surface geometry and a local plane tangent to the target location;defining at least two points within the local tangent plane which are spaced a predetermined distance from the desired target location;incrementally stepping a minimum distance from the at least two points in a direction opposite the outward normal to the tangent plane, to determine whether a surface threshold has been crossed so as to indicate a curvature of a target surface local to the target location;using the indicated curvature, determining a rotation of a magnetic field vector for providing an over-torque magnetic field for improving the contact of a medical device with the target surface;suitably registering the tissue surface geometry with the subject body; andapplying the determined rotation of a magnetic field vector to force the medical device against the target surface.
  • 2. The method of claim 1 wherein the crossing of the threshold is determined within a model of the three-dimensional target surface geometry.
  • 3. The method of claim 1 wherein the stepping process is performed for a virtual medical device within a three-dimensional model of the target surface geometry to determine if an image surface threshold is crossed.
  • 4. The method of claim 3 wherein the rotation of a field vector for providing an over-torque magnetic field is utilized to effect a movement of the virtual medical device and to predict the over-torque of the medical device against the target surface.
  • 5. The method of claim 1 wherein the medical device is a localized device and the stepping process is performed for the localized device using a three-dimensional model of the target surface geometry to determine if an image surface threshold is crossed.
  • 6. The method of claim 5 wherein the step of determining whether a threshold has been crossed determines whether the surface has at least one direction of negative curvature.
  • 7. The method of claim 6 wherein the rotation of the magnetic field vector is based on whether the surface has at least one direction of negative curvature.
  • 8. The method of claim 1 wherein the three-dimensional tissue surface geometry is a pre-operative image that is suitably registered with the subject body.
  • 9. The method of claim 1 wherein the three-dimensional tissue surface geometry is obtained from a localization system that maps the local surface geometry.
  • 10. The method of claim 1 wherein the incremental stepping process comprises incrementally moving a minimum distance from the at least two points, and determines whether a threshold has been crossed to discern if the surface is negatively curved or positively curved.
  • 11. The method of claim 10 wherein the at least two points are spaced a predetermined distance from the target, and the two points are within the local tangent plane containing the target location point.
  • 12. The method of claim 11 wherein the predetermined distance is in the range of 4 to 7 millimeters.
  • 13. The method of claim 12 wherein the incremental stepping of a minimum distance is in the range of about 1 to 5 millimeters.
  • 14. The method of claim 1, wherein the applying of a magnetic field comprises a magnetic navigation system applying a magnetic field that leads the orientation of the medical device tip by a pre-determined amount in the same plane as that of the device.
  • 15. The method of claim 1, wherein the applying of a magnetic field comprises a magnetic navigation system applying a magnetic field that leads the orientation of the medical device tip by a user-selected amount in the same plane as that of the device.
  • 16. The method of claim 1 wherein the method further comprises comparing the angular lag between the magnetic field vector and the actual orientation of the tip of the medical device to determine whether the medical device has established over-torque contact.
  • 17. A method for determining a control variable for establishing over-torque of a medical device against a three-dimensional tissue surface geometry within a subject body, the method comprising: obtaining local surface geometry information in an anatomical region of a subject body;identifying a desired target location on the surface;defining at least one point spaced from the desired target;evaluating an image model of the surface at the at least one point for the presence of an image threshold crossing;determining a change of at least one control variable, based on the evaluation, for effecting an over-torque of a medical device to improve contact of the device against the surface; andconfiguring a navigation system to effect the over-torque based on the change of the at least one control variable and based on a suitable registration of the surface with the subject body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional application of U.S. patent application Ser. No. 11/314,826, filed Dec. 20, 2005, which is now U.S. Pat. No. 7,751,867, which issued Jul. 6, 2010, which claims priority to U.S. Provisional Patent Application No. 60/637,504, filed Dec. 20, 2004.

US Referenced Citations (245)
Number Name Date Kind
5353807 DeMarco Oct 1994 A
5654864 Ritter et al. Aug 1997 A
5707335 Howard et al. Jan 1998 A
5779694 Howard et al. Jul 1998 A
5931818 Werp et al. Aug 1999 A
6014580 Blume et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6128174 Ritter et al. Oct 2000 A
6148823 Hastings Nov 2000 A
6152933 Werp et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6212419 Blume et al. Apr 2001 B1
6241671 Ritter et al. Jun 2001 B1
6272370 Gillies et al. Aug 2001 B1
6292678 Hall et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6298257 Hall et al. Oct 2001 B1
6298259 Kucharczyk et al. Oct 2001 B1
6304768 Blume et al. Oct 2001 B1
6311082 Creighton, IV et al. Oct 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6330467 Creighton, IV et al. Dec 2001 B1
6352363 Munger et al. Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6401723 Garibaldi et al. Jun 2002 B1
6428551 Hall et al. Aug 2002 B1
6459924 Creighton, IV et al. Oct 2002 B1
6475223 Werp et al. Nov 2002 B1
6505062 Ritter et al. Jan 2003 B1
6507751 Blume et al. Jan 2003 B2
6522909 Garibaldi et al. Feb 2003 B1
6524303 Garibaldi Feb 2003 B1
6527782 Hogg et al. Mar 2003 B2
6529761 Creighton, IV et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6542766 Hall et al. Apr 2003 B2
6562019 Sell May 2003 B1
6630879 Creighton, IV et al. Oct 2003 B1
6662034 Segner et al. Dec 2003 B2
6677752 Creighton, IV et al. Jan 2004 B1
6702804 Ritter et al. Mar 2004 B1
6733511 Hall et al. May 2004 B2
6740103 Werp et al. May 2004 B2
6755816 Ritter et al. Jun 2004 B2
6786219 Garibaldi et al. Sep 2004 B2
6817364 Garibaldi et al. Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6902528 Garibaldi et al. Jun 2005 B1
6911026 Hall et al. Jun 2005 B1
6940379 Creighton Sep 2005 B2
6968846 Viswanathan Nov 2005 B2
6975197 Creighton, IV Dec 2005 B2
6980843 Eng et al. Dec 2005 B2
7008418 Hall et al. Mar 2006 B2
7010338 Ritter et al. Mar 2006 B2
7017584 Garibaldi et al. Mar 2006 B2
7019610 Creighton, IV et al. Mar 2006 B2
7020512 Ritter et al. Mar 2006 B2
7066924 Garibaldi et al. Jun 2006 B1
7072703 Zhang et al. Jul 2006 B2
7137976 Ritter et al. Nov 2006 B2
7161453 Creighton, IV Jan 2007 B2
7189198 Harburn et al. Mar 2007 B2
7190819 Viswanathan Mar 2007 B2
7211082 Hall et al May 2007 B2
7248914 Hastings et al. Jul 2007 B2
7264584 Ritter et al. Sep 2007 B2
7276044 Ferry et al. Oct 2007 B2
7286034 Creighton Oct 2007 B2
7305263 Creighton, IV Dec 2007 B2
7313429 Creighton, IV et al. Dec 2007 B2
7341063 Garbibaldi et al. Mar 2008 B2
7346379 Eng et al. Mar 2008 B2
7389778 Sabo et al. Jun 2008 B2
7416335 Munger Aug 2008 B2
7495537 Tunay Feb 2009 B2
7505615 Viswanathan Mar 2009 B2
7516416 Viswanathan et al. Apr 2009 B2
7537570 Kastelein May 2009 B2
7540288 Viswanathan et al. Jun 2009 B2
7540866 Viswanathan et al. Jun 2009 B2
7543239 Viswanathan et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567233 Garibaldi et al. Jul 2009 B2
7603905 Creighton, IV Oct 2009 B2
7623736 Viswanathan Nov 2009 B2
7625382 Werp et al. Dec 2009 B2
7627361 Viswanathan Dec 2009 B2
7630752 Viswanathan Dec 2009 B2
7635342 Ferry et al. Dec 2009 B2
7657075 Viswanathan Feb 2010 B2
7662126 Creighton, IV Feb 2010 B2
7690619 Wolfersberger Apr 2010 B2
7708696 Ritter et al. May 2010 B2
7742803 Viswanathan et al. Jun 2010 B2
7747960 Garibaldi et al. Jun 2010 B2
7751867 Viswanathan Jul 2010 B2
7756308 Viswanathan Jul 2010 B2
7757694 Ritter et al. Jul 2010 B2
7761133 Viswanathan et al. Jul 2010 B2
7766856 Ferry et al. Aug 2010 B2
7769428 Viswanathan et al. Aug 2010 B2
7769444 Pappone Aug 2010 B2
7771415 Ritter et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7772950 Tunay Aug 2010 B2
7774046 Werp et al. Aug 2010 B2
7815580 Viswanathan Oct 2010 B2
7818076 Viswanathan Oct 2010 B2
7961926 Viswanathan Jun 2011 B2
8027714 Shachar Sep 2011 B2
20010038683 Ritter et al. Nov 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020100486 Creighton, IV et al. Aug 2002 A1
20020177789 Ferry et al. Nov 2002 A1
20040006301 Sell et al. Jan 2004 A1
20040019447 Shachar Jan 2004 A1
20040030244 Garibaldi et al. Feb 2004 A1
20040064153 Creighton, IV et al. Apr 2004 A1
20040068173 Viswanathan Apr 2004 A1
20040096511 Harburn et al. May 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040147829 Segner et al. Jul 2004 A1
20040157082 Ritter et al. Aug 2004 A1
20040158972 Creighton, IV et al. Aug 2004 A1
20040186376 Hogg et al. Sep 2004 A1
20040199074 Ritter et al. Oct 2004 A1
20040249262 Werp et al. Dec 2004 A1
20040249263 Creighton, IV Dec 2004 A1
20040260172 Ritter et al. Dec 2004 A1
20040267106 Segner et al. Dec 2004 A1
20050004585 Hall et al. Jan 2005 A1
20050020911 Viswanathan et al. Jan 2005 A1
20050021063 Hall et al. Jan 2005 A1
20050033162 Garibaldi et al. Feb 2005 A1
20050043611 Sabo et al. Feb 2005 A1
20050065435 Rauch et al. Mar 2005 A1
20050096589 Shachar May 2005 A1
20050113628 Creighton et al. May 2005 A1
20050113812 Viswanathan et al. May 2005 A1
20050119556 Gillies et al. Jun 2005 A1
20050119687 Dacey, Jr. et al. Jun 2005 A1
20050182315 Ritter et al. Aug 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050273130 Sell Dec 2005 A1
20060009735 Viswanathan et al. Jan 2006 A1
20060025675 Viswanathan et al. Feb 2006 A1
20060025679 Viswanathan et al. Feb 2006 A1
20060025719 Viswanathan et al. Feb 2006 A1
20060036125 Viswanathan et al. Feb 2006 A1
20060036163 Viswanathan Feb 2006 A1
20060036213 Viswanathan et al. Feb 2006 A1
20060041178 Viswanathan et al. Feb 2006 A1
20060041179 Viswanathan et al. Feb 2006 A1
20060041180 Viswanathan et al. Feb 2006 A1
20060041181 Viswanathan et al. Feb 2006 A1
20060041245 Ferry et al. Feb 2006 A1
20060058646 Viswanathan Mar 2006 A1
20060074297 Viswanathan Apr 2006 A1
20060079745 Viswanathan Apr 2006 A1
20060079812 Viswanathan Apr 2006 A1
20060093193 Viswanathan May 2006 A1
20060094956 Viswanathan May 2006 A1
20060100505 Viswanathan May 2006 A1
20060114088 Shachar Jun 2006 A1
20060116633 Shachar Jun 2006 A1
20060144407 Aliberto et al. Jul 2006 A1
20060144408 Ferry Jul 2006 A1
20060270948 Viswanathan et al. Nov 2006 A1
20060278248 Viswanathan Dec 2006 A1
20070016010 Creighton, IV et al. Jan 2007 A1
20070016131 Munger et al. Jan 2007 A1
20070021731 Garibaldi et al. Jan 2007 A1
20070021742 Viswanathan Jan 2007 A1
20070021744 Creighton, IV Jan 2007 A1
20070032746 Sell Feb 2007 A1
20070038065 Creighton, IV et al. Feb 2007 A1
20070038074 Ritter et al. Feb 2007 A1
20070040670 Viswanathan Feb 2007 A1
20070043455 Viswanathan et al. Feb 2007 A1
20070049909 Munger Mar 2007 A1
20070055124 Viswanathan et al. Mar 2007 A1
20070060829 Pappone Mar 2007 A1
20070060916 Pappone Mar 2007 A1
20070060962 Pappone Mar 2007 A1
20070060992 Pappone Mar 2007 A1
20070062546 Viswanathan et al. Mar 2007 A1
20070062547 Pappone Mar 2007 A1
20070073288 Hall et al. Mar 2007 A1
20070123964 Davies et al. May 2007 A1
20070146106 Creighton, IV Jun 2007 A1
20070149946 Viswanathan et al. Jun 2007 A1
20070161882 Pappone Jul 2007 A1
20070167720 Viswanathan Jul 2007 A1
20070179492 Pappone Aug 2007 A1
20070197899 Ritter et al. Aug 2007 A1
20070197906 Ritter Aug 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070250041 Werp Oct 2007 A1
20070270686 Ritter et al. Nov 2007 A1
20070287909 Garibaldi et al. Dec 2007 A1
20080004595 Viswanathan Jan 2008 A1
20080006280 Aliberto et al. Jan 2008 A1
20080015427 Kastelein et al. Jan 2008 A1
20080015670 Pappone Jan 2008 A1
20080016677 Creighton, IV Jan 2008 A1
20080016678 Creighton, IV et al. Jan 2008 A1
20080039705 Viswanathan Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080043902 Viswanathan Feb 2008 A1
20080058608 Garibaldi et al. Mar 2008 A1
20080058609 Garibaldi et al. Mar 2008 A1
20080059598 Garibaldi et al. Mar 2008 A1
20080064933 Garibaldi et al. Mar 2008 A1
20080065061 Viswanathan Mar 2008 A1
20080077007 Hastings et al. Mar 2008 A1
20080092993 Creighton, IV Apr 2008 A1
20080097200 Blume et al. Apr 2008 A1
20080114335 Flickinger et al. May 2008 A1
20080132910 Pappone Jun 2008 A1
20080200913 Viswanathan Aug 2008 A1
20080208912 Garibaldi Aug 2008 A1
20080228065 Viswanathan et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080287909 Viswanathan et al. Nov 2008 A1
20080294232 Viswanathan Nov 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080319303 Sabo et al. Dec 2008 A1
20090012821 Besson et al. Jan 2009 A1
20090062646 Creighton et al. Mar 2009 A1
20090082722 Munger et al. Mar 2009 A1
20090105579 Garibaldi Apr 2009 A1
20090105645 Kidd et al. Apr 2009 A1
20090131798 Minar et al. May 2009 A1
20090131927 Kastelein et al. May 2009 A1
20090138009 Viswanathan et al. May 2009 A1
20090177032 Garibaldi et al. Jul 2009 A1
20090177037 Viswanathan et al. Jul 2009 A1
20090306643 Pappone et al. Dec 2009 A1
20100063385 Garibaldi et al. Mar 2010 A1
20100097315 Garibaldi et al. Apr 2010 A1
20100163061 Creighton Jul 2010 A1
20100168549 Pappone Jul 2010 A1
Non-Patent Literature Citations (2)
Entry
Magnetic Manipulation Instrumentation for Medical Physics Research Authors: G. T. Gillies, r. C. Ritter, W. C. Broaddus, M. S. Grady, M. A. Howard, III, R. G. McNeil 1994 American Institute of Physics Rev. Sci. Instrum. vol. 65, No. 3, Mar. 1994 pp. 533-562.
International Search Report and Written Opinion for corresponding PCT/US/2005/046641 Dated: Sep. 27, 2007 pp. 7.
Related Publications (1)
Number Date Country
20110022029 A1 Jan 2011 US
Provisional Applications (1)
Number Date Country
60637504 Dec 2004 US
Divisions (1)
Number Date Country
Parent 11314826 Dec 2005 US
Child 12830708 US