One embodiment example of the invention is explained hereinafter by way of the
a a cross section through part of a contact plate according to the invention and
b a plan view of a bipolar plate composed of two such contact plates.
With the contact plate shown in
The contact surface 2 carries a coating 4 of platinum which covers the contact surface 2 over the whole area, but completely leaves free the recesses 3 with the exception of edge or transition regions which directly border the contact surface. In particular bottom regions 5 of the channel structure formed by the recesses 3 are free of the coating 4. The stainless steel from which the plate carrier 1 is manufactured, forms a passive layer there which in particular contains chromium oxide and which also protects the plate carrier 1 from corrosion where the active area which is only particularly coated has no coating. By way of the coating 4 of platinum, wherein also a different electrically conductive, corrosion-resistant material may be considered for the coating 4, a good electrical contact with a low contact resistance to an adjacent layer which is formed by a polymer electrolyte membrane or the corresponding diffusion layer or electrode is ensured. Such a contact would be prevented by the passive layer if the coating 4 were to be absent.
An edge region 12 of the contact plate which is shown in
By way of the embossing of a channel structure, the bipolar plate of the described embodiment example has an entire thickness of about 1 mm which corresponds to a channel depth of about 0.4 mm. The bipolar plate at the same time is formed by two parts of the type shown in
The coating 4 was deposited by pad galvanisation (tampon plating). In the same manner a manufacture of a coating of other galvanically pecipitatable substances would be possible, wherein in particular a coating with another precious metal such as gold would lend itself. With pad galvanisation (tampon plating), the plate carrier 1 itself serves as an electrode, whilst a second electrode which is surrounded by a material which is impregnated with a suitable electrolyte is led over the contact surface 2. By way of galvanic precipitation, the coating 4 then grows where the second electrode or the material surrounding it contacts the plate carrier 1 with the electrolyte, specifically at the contact surface 2, thus where the plate carrier 1 is raised. At the same time a wrapping of the second electrode of a non-woven may be provided as a material accommodating the electrolyte and surrounding the second electrode. A leaving-free of the recesses 3 during pad galvanisation (tampon plating) results also without any complicated prior masking of locations which are to remain free. Thus a partial coating of the contact plate also becomes possible in a quasi-continuous process with short cycle times. Also other lateral limitable coating methods such as spin-spraying, a use of slotted nozzles or printing methods may alternatively be used.
In particular one suitable embodiment of a contact plate according to the invention is possible with a coating 4 deposited by screen printing or roller printing, with which the coating 4 for example may be formed by way of a graphite-containing suspension or other suspensions or dispersions. By way of printing on a dispersion or suspension, in particular by way of screen printing or roller printing, onto the active area of the contact plate, likewise in a simple manner, a selective coating exclusively of the contact surface 2 may be achieved without a prior masking of the recesses 3 becoming necessary. An improved adhesion of the coating 4 on the contact surface 2 may be achieved on the basis of a thermoplastic or duroplastic polymer which melts or cross links on drying. A coating 4 which as with the embodiment example described by way of the figures is metallic may be realised as a material-saving conductor layer by way of printing a diluted metal dispersion onto the active area of the contact plate and subsequent melting, curing and cross linking onto the contact surface 2 of stainless steel.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 009 869.7 | Feb 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/02158 | 2/25/2005 | WO | 00 | 8/25/2006 |