K.A. Black et al., “Double-fused 1.5 μm vertical cavity lasers with record high To of 132K at room temperature” Electronics Letters, vol. 34, pp. 1947-1949 (1998). |
V. Jayaraman et al., “Uniform threshold current, continuous-wave, singlemode 1300nm vertical cavity lasers from 0 to 70° C,” Electronics Letters, vol. 34, pp. 1405-1407 (1998). |
M. Ortsiefer et al, “Submilliamp long-wavelength InP-based vertical-cavity surface-emitting laser with stable linear polarization,” Electronics Letters, vol. 36, pp. 1124-1126 (2000). |
W. Yuen et al., “High-performance 1.6μm single-epitaxy top-emitting VCSEL,” Electronics Letters, vol. 36, pp. 1121-1123 (2000). |
O. Blum et al., “Electrical and optical characteristics of A1AsSb/GaAsSb distributed Bragg reflectors for surface emitting lasers,” Appl. Phys. Lett., vol. 67, pp. 3233-3235 (1995). |
O. Blum et al., “Highly reflective, long wavelength A1AsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett., vol. 66, pp. 329-331 (1995). |
J. Boucart et al., “1-mW CW-RT Monolithic VCSEL at 1.55 μm,” IEEE Photonics Technology Letters, vol. 11, pp. 629-631 (1999). |
T. Uchida et al, “CBE Grown 1.5 μm GaInAsP-InP Surface Emitting Lasers,” IEEE Journal of Quantum Electronics, vol. 29, pp. 1975-1980 (1993). |
M.G. Peters et al., “Band-gap engineered digital alloy interfaces for lower resistance vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 63, pp. 3411-3413 (1993). |
E. Hall et al., “Electrically-pumped, single-epitaxial VCSELs at 1.55 μm with Sb-based mirrors,” Electronics Letters, vol. 35, pp. 1-2, (1999). |
G. Almuneau, et al., “Improved electrical and thermal properties of InP-A1GaAsSb Bragg mirrors for long-wavelength vertical-cavity lasers,” IEEE Photonics Technology Letters, vol. 12, pp. 1322-1324 (2000). |
E. Hall et al, “Selectively Etched Undercut Apertures in A1AsSb-Based VCSELs,” submitted to IEEE Photonics Technology Letters, vol. 13, pp. 97-99 (2001). |
G. Almuneau et al., “Molecular beam epitaxial growth of monolithic 1.55 μm vertical cavity surface emitting lasers with A1GaAsSb/A1AsSb Bragg mirrors,” Journal of Vacuum Science& Technology B, vol. 18, pp. 1601-1604 (2000). |
J.W. Scott et al, “High Efficiency Submilliamp Vertical Cavity Lasers with Intracavity Contacts,” IEEE Photonics Technology Letters, vol. 6, pp. 678-680 (1994). |
R.N. Naone, and L.A. Coldren, “Tapered Air Apertures for Thermally Robust VCL Structures,” IEEE Photonics Technology Letters, vol. 11, pp. 1339-1341 (1999). |
J.K. Kim et al, “Epitaxially-stacked multiple-active-region 1.55 μm lasers for increased differential efficiency,” Applied Physics Letters, vol. 74, pp. 3251-3253 (1999). |
J. Piprek et al., “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at —nm gain offset,” Applied Physics Letters, vol. 72, pp. 1814-1816 (1998). |
E. Hall et al., “Increased Lateral Oxidation Rates of AllnAs on InP using Short-Period Superlattices,” Electronic Materials Conference, Journ. Electron. Materials, vol. 29, No. 9, pp. 1100-1104 (2000). |
E.R. Hegblom et al., “Small efficient vertical cavity lasers with tapered oxide apertures,” Electronics Letters, vol. 34, pp. 895-896 (1998). |
G. Almuneau et al., “Accurate control of Sb composition in A1GaAsSb alloys on InP substrates by molecular beam epitaxy,” Journal of Crystal Growth, vol. 208,pp. 113-116 (1999). |
J.K. Kim, et al., “Room-temperature, electrically-pumped multiple-active-region VCSELs with high differential efficiency at 1.55 μm,” Electronics Letters, vol. 35, pp. 1084-1085, No. 13, pp. 1-2 (1999). |
M. Sugimoto, et al., “Surface emitting devices with distributed Bragg reflectors grown by highly precise molecular beam epitaxy,” Journal of Crystal Growth, vol. 127, pp. 1-4, (1993). |
M. Yano, et al., “Time-resolved reflection high energy electron diffraction analysis for atomic layer depositions of GaSb by molecular beam epitaxy,” Journal of Crystal Growth, vol. 146, pp. 349-353 (1995). |