The present invention relates generally to the structure of contacts of a sliding switch and, in particular, to the structure and configuration of stationary and movable contacts.
There is a growing demand for sliding switches that use printed circuit boards, wire frames, and the like as stationary contacts. Such switches are used in vehicles (e.g., to control lights, turn signals, etc.), in household devices (e.g., as program switches for washers and dryers, etc.), and many other applications.
A conventional arrangement and structure of contacts of a sliding step switch is shown in
A movable contact assembly 524 is mounted to an unillustrated holder which permits movement in the directions indicated by arrows A and B. Movable contact 524 includes first and second cylindrically shaped movable conductive contact heads 526, 528, mounted to respective conductive contact springs 530, 532. Contact springs 530, 532 are connected together by a conductive metal strip 534.
As shown on
Electrical contact is made between a cylindrically shaped movable contact head and a flat stationary contact pad by pressing the contact head onto the stationary contact pad creating a line of electrical contact points. Upon operation of the switch, contact is broken by movement of the movable contact head past the edge of the stationary contact pad, a line of electrical contact points being maintained until just before breaking the contact.
Under specific voltage and current conditions, an arc is initiated at the last point of electrical contact as the electrical contacts are moved apart from each other. The current flowing through the gap between contacts generates heat, resulting in temperatures high enough to cause arc erosion; some of the nearby insulation may be burned away.
Sliding movement of the contact head through the debris field also causes debris particles to be dragged into a main or steady state area of contact, known as a contacting zone 542, on the stationary contact pad 520 resulting in increased contact resistance when the contact head electrically contacts the contacting zone on the stationary contact pad during steady state use of the switch. The switch fails when debris causes the resistance between contacts to increase to a level whereby the contacts can no longer effectively complete a circuit or resistance becomes unacceptably high.
During switch operation, debris particles are also dragged onto insulating material disposed between stationary contact pads as the contact head is moved from one contact pad to another. Debris on the insulation material reduces the dielectric strength of the insulation. The switch fails when the isolation resistance between the contact pads is reduced to a point where a circuit is established between contact pads. Lubrication of the contacts generally increases the rate at which debris is deposited onto the insulation.
As electrical performance requirements for sliding switches continue to increase, improvement in sliding switch performance is needed to satisfy increasingly stringent requirements.
The present invention provides contact structures for a sliding switch capable of extending the service life of the switch while maintaining voltage stability as compared with a conventional contact structure.
In accordance with a first aspect of the present invention, an improved contact structure is provided for a sliding switch having a stationary contact pad and a movable contact that is capable of directing accumulation of arcing debris away from a portion of a steady state contacting zone on the stationary contact pad. Consequently, a portion of the contacting area between stationary and movable contacts remains generally free of arcing erosion debris for an extended portion of the service life of the switch, thus extending the service life and improving voltage stability as compared to a conventional configuration.
In accordance with the first aspect of the present invention, a contact structure for a sliding switch includes a stationary contact pad and a movable contact which moves along a path extending between a non-contact position where the movable contact is electrically isolated from the stationary contact pad and a make-contact position where the movable contact maintains a primary electrical interface with the stationary contact pad, the stationary contact pad including a contacting zone that electrically makes contact with the movable contact when the movable contact is in the make-contact position, the stationary contact including an arcing zone that electrically breaks from or makes the movable contact when the movable contact moves from the make-contact position to the non-contact position and vice versa, the arcing zone providing an area where arcing occurs between the stationary contact and the movable contact, the stationary contact and the movable contact are shaped and configured such that when the contacting zone is projected in parallel with respect to the path onto the arcing zone, at least a portion of a projection of the contacting zone lies outside the arcing zone to provide a region within the contacting zone which is generally outside of an arcing erosion debris path created by the movable contact as it slides across the stationary contact.
In a preferred embodiment of a sliding switch including a movable contact and a flat stationary contact pad, a contact edge defined on the stationary contact pad such that the contact edge electrically contacts the movable contact as the movable contact moves between a non-contact position and a steady state contact position, the movable contact has a cylindrically shaped contact head and the flat stationary contact pad has a V-shaped contact edge configured to partially define a concave region on the stationary contact pad. Consequently, two arcing zones are provided and a substantially arc free region is provided in between. Thus a portion of a contacting zone projected along a path of movement of the movable contact head falls on the substantially arc free region. A portion of the contacting zone, therefore, lies generally outside of an arcing erosion debris path created by the movable contact as it slides across the stationary contact. Other contact configurations may be used so that at least a portion of a projection of the contacting zone lies outside the arcing zone to provide a region within the contacting zone which is generally outside of an arcing erosion debris path created by the movable contact as it slides across the stationary contact.
In accordance with a second aspect of the present invention, a contact configuration is provided which is capable of directing arcing toward the contact pad connected to the positive terminal of a power source and away from contact pads connected to a negative terminal. This configuration is advantageous because accumulation of conductive arcing debris between adjacent stationary contact pads is reduced compared with configurations known in the art. Thus, dielectric strength between adjacent contact pads is maintained over an extended portion of the service life of a switch.
Further in accordance with the second aspect of the present invention, a contact configuration for a sliding switch includes a first stationary contact pad connected to a positive terminal of a power source, a second stationary contact pad connected to a negative terminal, and a movable contact, an insulating region electrically isolating each of the contact pads, the movable contact is configured to be movable between a contact position where the movable contact electrically connects the first and second stationary contact pads and a non-contact position where movable contact is electrically isolated from the second stationary contact pad, the first stationary contact pad and movable contact being configured so that as the movable contact moves from the contact position to the non-contact position the movable contact breaks from second stationary contact pad before it breaks from the first stationary contact pad and as the movable contact moves from the non-contact position to the make contact position, the movable contact makes contact with the first stationary contact pad before it makes contact with the second stationary contact pad.
In accordance with a third aspect of the present invention, a contact configuration is provided which is capable of directing arcing to occur simultaneously at a contact pad connected to a negative terminal and a contact pad connected to a positive terminal. Consequently, arcing energy is split between each contact pad. This configuration results in a decreased formation of arcing erosion debris at the contact pad connected to the negative terminal as compared to the amount generated by configurations known in the prior art.
Further in accordance with the third aspect of the present invention, a contact configuration for a sliding switch includes a first stationary contact pad connected to a positive terminal of a power source, a second stationary contact pad connected to a negative terminal, and a movable contact, an insulating region electrically isolating each of the contact pads, the movable contact is configured to be movable between a contact position where the movable contact electrically connects the first and second stationary contact pads and a non-contact position where movable contact is electrically isolated from the second stationary contact pad, the first stationary contact pad and movable contact being configured so that as the movable contact moves from the contact position to the non-contact position the movable contact breaks from second stationary contact pad at the same time that it breaks from the first stationary contact pad and as the movable contact moves from the non-contact position to the make contact position, the movable contact makes contact with the first stationary contact pad at the same time that it makes contact with the second stationary contact pad.
These and other features and advantages of the present invention will become apparent from the following brief description of the drawings, detailed description, and appended drawings.
The above-mentioned features of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which like numerals represent like elements and in which:
As discussed above, contact configurations in accordance with the present invention are capable of providing an increased number of switching cycles while providing a more stable resistance across contacts than achieved by known contact configurations.
Referring to the figures,
A circuit board substrate 112 is formed of a synthetic resin made of an insulating material. A first conductive stationary contact pad 114 connected to a positive terminal of a power source is disposed on substrate 112. Second, third, and fourth conductive stationary contact pads 116, 118, 120 connected to a negative terminal of a power source via a ground connection are disposed on substrate 112. An insulating material 122 such as a solder mask is disposed between contact pads 114, 116, 118, 120.
A conductive movable contact assembly 124 is mounted to an unillustrated holder which permits movement in the directions indicated by arrows A and B. Movable contact assembly 124 includes first and second cylindrically shaped conductive movable contacts 126, 128, mounted to respective conductive contact springs 130, 132. Contact springs 130, 132 are connected together by a conductive metal strip 134. As shown on
As shown on
As shown on
As illustrated on
Likewise, second and third contact pads 116, 118 have protruding portions that provide an electrical interface for discharge of arcing.
Second contact arrangement 310 is configured such that as the switch moves from an ON position to an OFF position, first movable contact 326 breaks contact first from first stationary contact pad 314 before breaking from one of second, third, or fourth contact pads 316, 318, 320. Second contact arrangement 310 is also configured such that as the switch moves from an OFF position to an ON position, second movable contact 328 makes contact with one of second, third, or fourth contact pads 316, 318, 320 before first movable contact 326 makes contact with first stationary contact pad 314. Consequently, arcing occurs between first movable contact 326 and first stationary contact pad 314 and does not occur for a significant portion of the service life of switch between second movable contact 328 and second, third, and fourth stationary contacts pads 316, 318, 320. This is advantageous in that conductive arc debris does not form between second, third, and fourth stationary contact pads 316, 318, 320 that reduces the dielectric strength between adjacent pads or which could cause a conductive circuit to form between pads. Protruding portions 344a, 344b are illustrated on second portion 362 of first stationary contact pad 314. Arcing generally occurs at the protruding portions 344a, 344b generally within path 370.
Third contact arrangement 410 is configured such that as the switch moves from an ON position to an OFF position, a first movable contact 426 breaks contact from first stationary contact pad 414 simultaneously with second movable contact 428 breaking contact with one of second, third, or fourth contact pads 416, 418, 420. Second contact arrangement 410 is also configured such that as the switch moves from an OFF position to an ON position, second movable contact 428 makes contact with one of second, third, or fourth contact pads 416, 418, 420 at the same time first movable contact 426 makes contact with first stationary contact pad 414. Consequently, arcing occurs with both the first and second movable contacts 426, 428. This configuration is capable decreasing formation of arcing erosion debris at the contact pads connected to the negative terminal as compared to the amount generated by configurations known in the prior art.
The preferred embodiments shown and described herein are provided merely by way of example and are not intended to limit the scope of the invention in any way. Preferred dimensions, ratios, materials and construction techniques are illustrative only and are not necessarily required to practice the invention. It is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments herein. Further modifications and alterations may occur to others upon reading and understanding the specification.
Number | Name | Date | Kind |
---|---|---|---|
4506119 | Tanabe | Mar 1985 | A |
4825020 | Rao et al. | Apr 1989 | A |
5357069 | Nishio et al. | Oct 1994 | A |
5365028 | Takano | Nov 1994 | A |
5672854 | Nishio | Sep 1997 | A |
5898142 | Ohtaki et al. | Apr 1999 | A |
6072138 | Sato | Jun 2000 | A |
6488549 | Weller et al. | Dec 2002 | B1 |
6831239 | Van Den Akker et al. | Dec 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050205396 A1 | Sep 2005 | US |