The present application hereby claims priority under 35 U.S.C. ยง119 on European patent application number EP 04012444.8 filed May 26, 2004, the entire contents of which is hereby incorporated herein by reference.
The invention generally relates to a contact system, for example for electromechanical switchgear such as, for example, a contactor, position switch, command and feedback device or contactor combination.
A contact system has both a fixed contact and a moving contact. The fixed contact in this case serves to make contact with a connecting line or the like. The moving contact serves to open and close the contact system. For this purpose, the moving contact must be mounted in such a way that the switch pieces of the moving and of the fixed contact meet one another in a defined manner.
In order to make a secure contact, in addition the application of a defined contact-making force is necessary. In addition, the moving contact is to be largely decoupled from its drive or actuating element, for example a magnetic drive, slide, switch piece carrier, snap-action system or the like, in order to avoid negative kinetic influences.
For this purpose, it is known from the art to mount the moving contact by use of a metal spring which acts on the moving contact, directly or indirectly, for example via a movable contact holder or a snap-action system. This metal spring leads not only to a shortening of the air gaps and creep distances, but also, as an additional component, causes higher material and mounting costs and increases the risk of failure of the entire subassembly.
It is an object of an embodiment of the invention to provide a contact system which needs comparatively little overall space.
According to an embodiment, the contact system has a fixed contact, in particular for making contact with a connecting line, and a moving contact which can be actuated by a drive or actuating element in order to open and close the electrical connection to the fixed contact. Furthermore, a contact holder is provided to hold the moving contact. Connected to the contact holder is a spring element made of an electrically nonconducting material. This spring element is used to spring the moving contact.
An aspect of an embodiment of the invention is to substitute the spring material used hitherto for the spring element. Instead of a metallic spring, an electrically nonconducting spring element is now used. Air gaps and creep distances are not shortened, which means that a considerable reduction in the necessary overall space is possible.
If the contact holder likewise includes an electrically nonconducting material, negative influences on the bearing point of the spring element and contact holder or the position of the moving contact in the event of heating or cooling can in this case be reduced further on the basis of temperature expansion coefficients which are identical to the greatest possible extent.
The material from the spring element, according to a further advantageous embodiment of the invention, is a thermoplastic (such as PES, PESU, PEI, PPS, POM, PA) or an elastomer. The unfavorable post-oscillation of the moving contact is reduced as compared with the use of a metal spring, since materials of this type have a greater damping constant than metal.
The use of plastics such as thermoplastics or elastomers at the same time permits integration of functional areas on the contact holder. In this way, the subassembly can be configured so as to be improve or even optimized in terms of mounting, for example having guide and bearing surfaces. This reduces development, material and mounting costs. The functional areas are in one example case, formed in order to produce a snap-action, latching or press connection.
A mounting element is expediently provided, which permits automated handling of the spring element. This can be, for example, a mounting hole, which can have an internal contour. For the purpose of better handling by a gripper, the spring element in a further embodiment of the invention has a profile which can be gripped easily, for example is angular.
The present invention will be described in more detail in the following text by using example embodiments, which will be explained with the aid of the drawings, in which:
A known contact system 1 according to the prior art is shown by
The two contact holders 10 depicted in
The spring element 11 depicted in
Each contact holder 10 has a holding region 15 to hold a movable contact (not depicted). Each holding region 15 in this case comprises two pairs of holding elements. Each pair of holding elements has two holding elements 17 which are spaced apart from each other and extend in the connecting direction 16. In order to produce a mechanical connection between moving contact and contact holder 10, a snap-action or latching hook 18 is provided on each holding element 17. During the mounting of the moving contact on the contact holder 10, the moving contact is pushed with its appropriately provided snap-action recesses onto the two snap-action hooks 18 of the respective pair of holding elements.
The embodiment depicted in
Embodiments of the present invention can be used for any desired types of contact systems, in particular for contact systems having a bridge spring or the like for the defined application of a contact force. This relates both to contact systems with a snap-action or a slow make and break system, in particular position switches, and also magnet actuated contact systems, in particular contactors.
Example embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
04012444 | May 2004 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3229062 | Sharples et al. | Jan 1966 | A |
3762684 | Stein | Oct 1973 | A |
4405848 | Jaegle | Sep 1983 | A |
4437611 | Gilroy | Mar 1984 | A |
5628356 | Marocco | May 1997 | A |
5766353 | Madrzak et al. | Jun 1998 | A |
6862999 | O'Donnell et al. | Mar 2005 | B1 |
6957611 | O'Donnell et al. | Oct 2005 | B1 |
6985119 | Forster et al. | Jan 2006 | B1 |
20010041079 | Michlin et al. | Nov 2001 | A1 |
20020119364 | Bushong et al. | Aug 2002 | A1 |
20040089193 | O'Donnell et al. | May 2004 | A1 |
20040108190 | Wong | Jun 2004 | A1 |
20040246710 | Halasz et al. | Dec 2004 | A1 |
20060055686 | Lee | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
1 276 163 | Aug 1968 | DE |
Number | Date | Country | |
---|---|---|---|
20060131142 A1 | Jun 2006 | US |