The present invention relates to liquid dispensing and, more particularly, to a touchless/contactless liquid dispenser.
Beverage dispensers are used for serving drinks on a large scale and in a manner that each individual can serve themselves from it. Epidemics, such as the coronavirus disease 2019 (COVID-19) epidemic, prevent vendors from being able to safely distribute beverages, such as cold bulk water, flavored drink beverages (such as GATORADE™), and other consumable liquids, because commonly touched surfaces become a hazard (during pandemics and due to other diseases that may be present at any given time). Consequently, prior to the present invention, there was no way to safely hydrate worker at job sites, factories, sporting events and other group settings where individuals are usually in need of hydration.
Conventional solutions require touching or depressing of a button to activate the liquid dispenser. A popular example of such is a five-gallon drink dispenser with a spout and pour button disposed at a lower end thereof. Furthermore, the solutions require putting the cup close to or touching the spout to catch the beverage being dispensed. If an individual has already drank out of the cup (which is very frequently the case), there is even more possibility to spread various types of germs (including, but not limited to, COVID-19).
As can be seen, there is a need for a contactless, mobile liquid dispenser in accordance with the present invention.
In one aspect of the present invention, a beverage dispenser comprises: a reservoir configured to contain a beverage; a dispensing spout configured to dispense the beverage; a sensor configured to detect when a beverage container is disposed in a sensor zone proximal the dispensing spout; and a pump operably coupled to the reservoir and the dispensing spout, the pump being configured to pump the beverage out of the dispensing spout upon the detection, by the sensor, of the beverage container being disposed in the sensor zone.
In another aspect of the present invention, a beverage dispenser system comprises: a reservoir; a beverage contained within the reservoir; a dispensing spout configured to dispense the beverage; a beverage container; a sensor configured to detect when the beverage container is disposed in a sensor zone proximal the dispensing spout; and a pump operably coupled to the reservoir and the dispensing spout, the pump being configured to pump the beverage out of the dispensing spout upon the detection, by the sensor, of the beverage container being disposed in the sensor zone.
In another aspect of the present invention, a method of dispensing a beverage comprises the steps of: providing a reservoir; providing a beverage contained within the reservoir; providing a dispensing spout that is configured to dispense the beverage; providing a beverage container; providing a sensor configured to detect when the beverage container is disposed in a sensor zone proximal the dispensing spout; providing a pump operably coupled to the reservoir and the dispensing spout; positioning the beverage container in the sensor zone; detecting, by the sensor, the beverage container being disposed in the sensor zone; and pumping, by the pump, the beverage out of the dispensing spout.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following figures are included to illustrate certain aspects of the present disclosure, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function, without departing from the scope of this disclosure.
The subject disclosure is described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure such that one skilled in the art will be enabled to make and use the present invention. It may be evident, however, that the present disclosure may be practiced without some of these specific details.
Broadly, an embodiment of the present invention provides a contactless beverage dispenser. This embodiment makes use of a sensor that is operatively coupled to a pump for selective activation thereof. The sensor is positioned to detect, in a sensor zone thereof, the presence of a beverage container being located proximal a dispensing spout of the beverage dispenser. Upon detection of the beverage container, the pump is activated to pump and dispense a beverage out the dispenser spout and into the beverage container for a user to consume.
In accordance with certain aspects of the present invention, after filling a cooler (which may be insulated) with a beverage, and individual may put his/her bottle or other liquid container (e.g., a cup) a predetermined distance away from a fill spout, and the liquid is dispensed from the fill spout, stopping when the liquid container is pulled away. In certain embodiments, the predetermined distance may be approximately 2.5 inches. Other than the liquid/beverage container, which must be grasped by the individual, no contact or touching is required to dispense the beverage, eliminating germ transmission due to physical contact with parts of the beverage dispenser. At any event where beverages are supplied (such as sporting events, job sites, etc.), germ transmission is reduced or eliminated due to embodiments of the present invention.
In future iterations of embodiments of the present invention, it could be provided as a more compact, less expensive unit, provided that the functionality remains the same. Various means of power may be provided in accordance with the present invention. For example, embodiments of the present invention may be powered by 120 volts alternating current and/or 12 volts direct current. As will be readily apparent to one of ordinary skill in the art, the contactless beverage dispensing technology discussed herein may be applied to various types of beverages, such as water, GATORADE™, soda, and more.
Referring now to
The housing assembly 16, in use, dispenses a beverage 16A via a dispensing spout 16B. The housing assembly 16 may be provided with a photo eye 16C (i.e., a photoelectric sensor), mounted on an outer surface thereof, and a support 16D for supporting the photo eye 16C. As shown in
A plurality of sanitizing lights 16M (such as ultraviolet light emitting diodes (LEDs)) may be provided adjacent the support 16D to provide sanitization of the area around where the beverage 16A is discharged (including the dispensing spout 16B), even further reducing the risk of germ transmission when utilizing the dispenser 10. The sanitizing ultraviolet lights 16M may run continuously to constantly disinfect the spout 16B so that it is disinfected in the event a user 12 or container 12A accidentally comes into contact with the spout 16B. Alternatively, in other embodiments, the lights 16M may be selectively activated when the photo eye 16C detects the presence of the beverage container 12A in the sensor zone 16E.
Referring now to
Further, as shown in
In use, the dispenser 10 is first placed at a location, such as a job site, event, or other location where a user 12 would typically need or want a beverage 16a dispensed. The user 12 then places a beverage container 12A underneath a dispensing spout 16B of the dispenser 10. The location/region directly underneath the dispensing spout 16B where the user 12 places the container 12A is located a predetermined distance away from a photo eye 16C (such as 2.5 inches). As shown in
As evidenced by the embodiments of
Therefore, the disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein.
While apparatuses and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the apparatuses and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the elements that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
Moreover, the use of directional terms such as above, below, upper, lower, upward, downward, left, right, and the like are used in relation to the illustrative embodiments as they are depicted in the figures, the upward or upper direction being toward the top of the corresponding figure and the downward or lower direction being toward the bottom of the corresponding figure.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
This application claims the benefit of priority of U.S. provisional application No. 63/198,095, filed Sep. 29, 2020, the contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5588558 | Cox | Dec 1996 | A |
6227265 | Skell et al. | May 2001 | B1 |
6705356 | Barton et al. | Mar 2004 | B2 |
8028728 | Cooper | Oct 2011 | B2 |
8572772 | Wolf et al. | Nov 2013 | B2 |
8813794 | Ashrafzadeh et al. | Aug 2014 | B2 |
9004115 | Krause et al. | Apr 2015 | B2 |
9164518 | Houghton | Oct 2015 | B2 |
9526805 | Pawlow | Dec 2016 | B2 |
9926181 | Volftsun et al. | Mar 2018 | B1 |
10233069 | Chase et al. | Mar 2019 | B2 |
10294093 | Volftsun et al. | May 2019 | B1 |
10337662 | Gradillas et al. | Jul 2019 | B1 |
20030159460 | Netter | Aug 2003 | A1 |
20060112990 | Shiloni | Jun 2006 | A1 |
20140188271 | Hernandez | Jul 2014 | A1 |
20160122173 | Ka | May 2016 | A1 |
20180093875 | Steele | Apr 2018 | A1 |
20200063409 | Wall et al. | Feb 2020 | A1 |
20200122994 | Cimatti | Apr 2020 | A1 |
20220017347 | Conway | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
WO-2020264376 | Dec 2020 | WO |
Number | Date | Country | |
---|---|---|---|
20220098022 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63198095 | Sep 2020 | US |