Typical mechanical encoders or switches stop working after a prescribed period of time due to normal wear and tear resulting from friction or resistance between moving parts and especially when deployed in outdoor environments where contact oxidation may furthermore be a concern. Thus, a more robust encoder design is needed.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims, and the invention encompasses numerous alternatives, modifications, and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example, and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
A high reliability, contactless encoder based on a finite state machine is disclosed herein. In various embodiments, the disclosed encoder may comprise any appropriate mechanical configuration or layout. For example, the encoder may comprise a linear encoder or a rotary encoder. In some embodiments, the encoder is configured to operate as a switch, such as a linear switch or a rotary switch. As further described herein, operation of the disclosed contactless encoder or switch is based on a finite state machine. A finite state machine is in exactly one of a finite number of possible states at any given time. Thus, a finite state machine employed with an encoder or switch ensures that only one encoder state or switch position/setting is selected at any given time. In some embodiments, the disclosed encoder or switch includes an integrated circuit that provides the finite state machine functionality.
In the following description, the disclosed techniques are described with respect to a prescribed embodiment of a mechanical encoder. However, the described embodiment merely serves as an example to describe the invention. Generally, the disclosed techniques may be employed with respect to any other appropriate encoder or switch configurations having any number of associated states.
In some embodiments, selector 102 and plate 108 comprise a conductive material, e.g., a metal such as copper. When in the configuration depicted in
In some embodiments, switch 100 is contactless, i.e., the plates of the aforementioned first and second capacitors are not in direct contact. In some such cases, knob 104 is positioned above plate 108 in a manner such that selector 102 hovers over plate 108, effectively creating an air gap between selector 102 and plate 108. In some cases, an insulator such as plastic may be employed to cover the entire conductive surface comprising plate 108 and/or selector 102. Generally, any one or more dielectric materials may be employed between selector 102 and plate 108.
The layouts of the selector and the sector pads may be optimized to maximize signal strength. In some cases, switch 100 may be designed to have symmetric sector pads (i.e., pads having the same geometry), for example, to ensure a more robust design in which all pads receive noise or interference in common mode. In some cases, the layout and dimensions of the selector and sector pads may be selected such that there is no overlap of two pads at the same time for a given selector position. Good sensitivity may be achieved in a board layout by having interconnect traces to the pads that are very narrow and equal in length to each other so that the total capacitance of each sector pad is the same or approximately the same. The sector pads of switch 100 interface with an integrated circuit as described next with respect to
Integrated circuit 202 independently runs or operates to detect the state, position, or setting of encoder or switch 200. That is, integrated circuit 202 operates on its own independently of the currently selected state, position, or setting of encoder or switch 200 or changes thereto. Generally, integrated circuit 202 is configured to generate an output signal that initiates detection, receive input signals from each sector pad of the encoder or switch, interpret each sector pad input signal using a finite state machine and associated arbitration circuitry to determine a single valid state, and present as output an output signal associated with the detected state.
More specifically, an output signal of integrated circuit 202, i.e., EVAL in
As depicted in
The disclosed techniques comprise a low power and robust solution for a high reliability encoder that may be used with respect to any of a variety of applications such as outdoor timers, lighting controllers, peak flow meters, or any other applications that require stable, long term performance such as outdoor applications subject to environmental effects including moisture, dust, temperature extremes, etc. The contactless design results in a (e.g., wiper-based) mechanical encoder to be immune to contact oxidation and wear. Moreover, the disclosed design continues to operate regardless of whether it is fabricated as contactless (i.e., capacitively coupled) and later degrades to direct connection or fabricated as direct connection and later degrades to contactless (i.e., capacitively coupled).
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
This application claims priority to U.S. Provisional Patent Application No. 62/561,621 entitled CONTACTLESS ROTARY ENCODER filed Sep. 21, 2017, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3766544 | Batz | Oct 1973 | A |
5554981 | Koch | Sep 1996 | A |
5780795 | O'Reilly | Jul 1998 | A |
6380642 | Buchner | Apr 2002 | B1 |
7420376 | Tola | Sep 2008 | B2 |
20040164731 | Moreno | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
62561621 | Sep 2017 | US |