Contactless loading unit detection

Information

  • Patent Grant
  • 11478324
  • Patent Number
    11,478,324
  • Date Filed
    Friday, August 21, 2020
    3 years ago
  • Date Issued
    Tuesday, October 25, 2022
    a year ago
Abstract
A loading unit detection system includes an elongate member, a loading unit, a magnet, and a GMR IC. The elongate member defines a receiver. The loading unit includes a connector that is configured to be received within the receiver to releasably couple the loading unit to the elongate member. The magnet is supported on the connector and is configured to translate relative to the elongate member as the connector is received within the receiver. The GMR IC is embedded within the elongate member and is configured to output a differential voltage in response to a magnetic field produced by the magnet of the loading unit. The differential voltage is indicative of the position of the loading unit within the receiver of the elongate member.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical instruments and, more specifically, to surgical instruments having contactless detection systems for determining connection between components of the surgical instrument.


2. Discussion of Related Art

Surgical instruments having a handle and a loading unit releasably coupled to the handle are known. Generally, the loading unit receives mechanical input from the handle to actuate a tool of the loading unit.


Some surgical instruments include a detection system to identify and notify a clinician when the loading unit is properly coupled to the handle. Generally, the detection system includes contacts and a mechanical switch. In such instruments, the contacts may be exposed to bodily fluids, e.g., blood or saline. This fluid exposure may result in malfunctioning of the detection system.


In addition, surgical instruments that include detection systems having exposed contacts may be damaged during resterilazation of the surgical instruments. More specifically, during an autoclave process, exposed electrical contacts may be susceptible to damage from the steam and the high-pressure fluids used in the autoclave process. For example, during the autoclave process the exposed electrical contacts may corrode, form dendtric growths, or electro-plate.


Accordingly, a continuing need exists for detection systems that are not susceptible fluid ingress and/or damage from a resterilization process.


SUMMARY

In an aspect of the present disclosure, a loading unit detection system includes an elongate member, a loading unit, a magnet, and a giant magneto-resistance integrated circuit (“GMR IC”). The elongate member defines a receiver. The loading unit includes a connector that is configured to be received within the receiver to releasably couple the loading unit to the elongate member. The magnet is supported on the connector and is configured to translate relative to the elongate member as the connector is received within the receiver. The GMR IC is embedded within the elongate member and is configured to output a differential voltage in response to a magnetic field produced by the magnet of the loading unit. The differential voltage is indicative of the position of the loading unit within the receiver of the elongate member. The magnet may be embedded within the connector of the loading unit.


In aspects, the loading unit detection system includes a secondary magnet that is embedded within the loading unit such that the differential voltage of the GMR IC induced by a combined magnetic field of the magnet and the secondary magnet is indicative of the position of the loading unit within the receiver of the elongate member and the type of the loading unit.


In some aspects, the loading unit detection system includes an operational amplifier and a latch. The operational amplifier may receive the differential voltage from the GMR IC and transmit an amplified output to the latch. The latch may have a first state when the amplified output is below a threshold and a second state when the amplified output is above the threshold. The amplified output may be below the threshold when the connector is in an uncoupled state with the receiver and above the threshold when the receiver is in a coupled state with the receiver. The operation amplifier and the latch may be integrated with the GMR IC.


In certain aspects, the loading unit detection system includes an instrument amplifier and a filter. The instrument amplifier receives the differential voltage from the GMR IC and outputs an amplified signal to the filter. The filter may be configured to output a filtered signal indicative of the position of the connector relative to the receiver and a type of the loading unit.


In another aspect of the present disclosure, a surgical instrument includes a handle, an adapter, a loading unit, and a loading unit detection system. The adapter is releasably coupled to the handle. The loading unit is releasably coupled to the adapter. The loading unit detection system is configured to detect coupling of the loading unit to the adapter. The loading unit detection system includes a magnet and a GMR IC. The magnet is supported on the loading unit and translates relative to the elongate member as the loading unit is coupled to the adapter. The GMR IC is embedded within the adapter and is configured to output a differential voltage in response to a magnetic field produced by the magnet of the loading unit. The differential voltage produced by the GMR IC is indicative of the position of the loading unit within the elongate member.


In aspects, the adapter defines a receiver and the loading unit includes a connector. The connector may be received within the receiver to releasably couple the loading unit to the adapter. The magnet may be embedded within the connector of the loading unit. The GMR IC may be embedded within the receiver of the adapter.


In some aspects, the surgical instrument includes a microprocessor that is disposed within the handle. The microprocessor may receive a signal from the GMR IC that is indicative of the position of the loading unit relative to the adapter. The signal received by the microprocessor may be indicative of the type of loading unit.


Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present loading unit detection systems for surgical instruments are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:



FIG. 1 is a perspective view of a surgical instrument provided in accordance with the present disclosure including a handle, an adapter coupled to the handle, and a loading unit coupled to the adapter;



FIG. 2 is a perspective view of the surgical instrument of FIG. 1 with the loading unit separated from the adapter;



FIG. 3 is an enlarged view of the indicated area of detail of FIG. 2;



FIG. 4 is a side view of a distal portion of the adapter and a proximal portion of the loading unit of FIG. 3 with parts separated;



FIG. 5 is a side view of the distal portion of the adapter and the proximal portion of the loading unit of FIG. 3 with the loading unit coupled to the adapter;



FIG. 6 is a schematic of a detection circuit provided in accordance with the present disclosure; and



FIG. 7 is a schematic of another detection circuit provided in accordance with the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present loading unit detection systems for surgical instruments are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to that portion of the device or component thereof that is closest to the clinician and the term “distal” refers to that portion of the device or component thereof that is farthest from the clinician.


Referring now to FIGS. 1-3, a surgical instrument 10 is provided in accordance with the present disclosure including a handle 20, an adaptor 30, and a loading unit 40. The adaptor 30 includes a proximal portion having a handle connector 32. The handle 20 defines an adaptor receiver 26 for receiving the handle connector 32 to releasably couple the adaptor 30 to the handle 20. The loading unit 40 has a proximal portion includes a loading unit connector 42. The adaptor 30 has a distal portion that defines a loading unit receiver 36 that is positioned to releasably couple the disposable loading unit 40 to the adaptor 30. The loading unit 40 includes an end effector assembly 140 including first and second jaw members 142, 144 that are moveable relative to one another and are configured to act on tissue. It is contemplated that the adapter 30 may be fixed to the handle 20 such that the adapter 30 defines an elongate portion extending from the handle 20.


An exemplary embodiment of a surgical instrument is disclosed in commonly owned U.S. Pat. No. 9,055,943, the contents of which are hereby incorporated by reference in its entirety.


With particular reference to FIG. 3, the adapter 30 includes a translatable shaft 34 that extends distally through the loading unit receiver 36 and is configured to transfer mechanical energy from the adapter 30 to the loading unit 40 to actuate one or more functions of the end effector assembly 140 (FIG. 2), e.g., approximation and/or firing. The loading unit connector 42 of the loading unit 40 defines a shaft receiver 46 that receives the shaft 34 of the adapter 30. When the loading unit connector 42 is fully received within the loading unit receiver 36 the shaft 34 is coupled to the shaft receiver 46 such that translation of the shaft 34 actuates the end effector assembly 140.


With reference to FIGS. 3-5, the adapter 30 includes a contactless loading unit detection system 200 to determine the position of the loading unit connector 42 within the loading unit receiver 36. The loading unit detection system 200 includes a giant magneto-resistance integrated circuit (GMR IC) 210 embedded within a distal portion of the adapter 30 and the loading unit 40 includes a magnet 48 embedded within the loading unit connector 42. As detailed below, the GMR IC 210 is configured to output a differential voltage based upon the magnetic field induced in the GMR IC 210 by the magnet 48 of the loading unit 40. It will be appreciated that the differential voltage of the GMR IC 210 increases as a distance between the magnet 48 and the GMR IC 210 decreases.


In embodiments, the GMR IC 210 may be embedded within or adjacent the loading unit receiver 36 of the adapter 30 and/or the magnet 48 may be embedded within or adjacent the loading unit connector 42. By embedding both the GMR IC 210 and the magnet 48 within the loading unit receiver 36 and the loading unit connector 42, respectively, the loading unit detection system 200 does not include any exposed contacts. As such, fluid ingress into the loading unit detection system 200 is prevented. By preventing fluid ingress into the loading unit detection system 200, false indemnification of proper coupling of the loading unit 40 with the adapter 30 may be minimized.


The induced differential voltage of the GMR IC 210 is indicative of the position of the magnet 48 relative to the GMR IC 210 and thus, indicative of the position of the loading unit connector 42 of the loading unit 400 within the loading unit receiver 36 of the adapter 30. When the differential voltage of the GMR IC 210 reaches a predetermined threshold value, the loading unit connecter 42 is fully received within the loading unit receiver 36 (FIG. 5) such that the loading unit 40 is coupled to the adapter 30.


The GMR IC 210 may provide an analog or digital output indicative of the position of the loading unit connector 42 within the loading unit receiver 36. The handle 20 may include an indicator 28 configured to provide a visual indication of the position of the loading unit 40 within the adapter 30 and/or provide a visual indication when the loading unit 40 is coupled to the adapter 30.


In embodiments, the differential voltage of the GMR IC 210 may be used to identify the type of loading unit that is coupled to the adapter 30. For example, the loading unit 40 may include one or more additional magnets 49 that are/is configured to generate a unique magnetic field in the GMR IC 210 when the loading unit 40 is coupled to the adapter 30 such that the differential voltage of the GMR IC 210 is characteristic of the loading unit 40 that is coupled to the adapter 30.


The differential voltage of the GMR IC 210 is received within a GMR circuit, e.g., GMR circuit 220 (FIG. 6) or GMR circuit 320 (FIG. 7) detailed below, and outputted to a microprocessor 250 (FIG. 1) disposed within the handle 20 of the surgical instrument 10. The microprocessor 250 analyzes the output of the GMR circuit to detect and/or identify a loading unit 40 is properly coupled to the adapter 30.


With reference to FIG. 6, a schematic of an illustrative GMR circuit 220 capable of detecting and identifying the presence and/or relative position of a loading unit, e.g., loading unit 40, is shown. The GMR circuit 220 includes the GMR IC 210 in the form of a partially shielded bridge 222 with positive and negative outputs 224+, 224−. The GMR IC 210 outputs a differential voltage signal based on a magnetic field induced in the GMR IC 210 by the magnets 48, 49 (FIG. 3). Specifically, as the magnetic field experienced by the GMR IC 210 varies, e.g., as the position of the magnets 48, 49 relative to the GMR IC 210 changes, the differential voltage of the output 224 varies. The outputs 224 of the GMR IC 210 are electrically coupled to an instrumentation amplifier 230 which outputs an amplified signal. The amplified signal may pass through a filter, e.g., low pass filter 240 before being transmitted to the microprocessor 250. The filtered signal of the low pass filter 240 may be transmitted to the analog to digital converter (ADC) 252 of the microprocessor 250 which analyzes the signal to identify the loading unit 40 based on a unique voltage signature and to determine when the loading unit 40 is coupled to the adapter 30. The microprocessor 250 may provide visual and/or audible indicia of the type of loading unit 40 and/or when the loading unit 40 is coupled to the adapter 30. The visual indicia may be provided on the display 28 (FIG. 1).


With reference to FIG. 7, a schematic of another illustrative GMR circuit 320 capable of detecting presence and/or relative position of a loading unit, e.g., loading unit 40, is shown. The GMR circuit 320 includes the GMR IC 210 in the form of a partially shielded bridge 322 with positive and negative outputs 324+, 324−. The GMR IC 210 outputs a differential voltage signal base on a magnetic field induced in the GMR IC 210 by the magnet 48. Specifically, as the magnetic field experienced by the GMR IC 210 varies, e.g., as the position of the magnet 48 relative to the GMR IC 210 changes, the differential voltage of the output 324 varies. The outputs 324 of the GMR IC 210 are electrically coupled to a comparator circuit 330 configured to detect when a signal from the GMR IC 210 exceeds a threshold value indicative of the position of the magnet 48 when the loading unit 40 is coupled to the adapter 30. The comparator circuit 330 may include an operational amplifier 332 and a latch 334 such that a connection signal is outputted from the latch 334 to the microprocessor 250 when the voltage of the GMR IC 210 is above the threshold value. It will be appreciated that no connection signal is outputted from the latch 334 when the voltage of the GMR IC 210 is below the threshold value. Alternatively, the latch 334 can be reversed such that the connection signal is outputted when the voltage of the GMR IC 210 is below the threshold value and is not outputted when the voltage of the GMR IC 210 is above the threshold value. The comparator circuit 330 may be integrated with the shielded bridge 322 to form an integrated GMR IC 210. The microprocessor may provide visual and/or audible indicia when the loading unit 40 is coupled to the adapter 30. The visual indicia may be provided on the display 28 (FIG. 1).


In some embodiments, the adapter 30 includes a translating element (not shown) which is translated proximally as the loading unit connector 42 is received within the loading unit receiver 36. In such embodiments, the magnet 48 and/or magnet 49 may be embedded within the translating element and the GMR IC 210 may be embedded within the adapter 30 at a position to determine the position of the magnet 48. In these embodiments, the entire detection system 200 may be disposed within the adapter 30 and/or the GMR IC 210 may be positioned in a central or proximal portion of the adapter 30 remote from the loading unit receiver 36. In some embodiments, the magnet 48 is embedded in the translating element and the magnets 49 are embedded within the loading unit connector 42 to induce a unique voltage in the GMR IC 210. For an exemplary translating element reference may be made to the detection link ring, the switch link ring, the switch link, the switch pin, or the switch button of the loading unit detection assembly of U.S. Pat. No. 10,080,563, the entire contents of which are hereby incorporated by reference.


It will be appreciated that the handle 20 and the adapter 30 may also include a contactless detection system similar to the contactless detection system 200 detailed above to detect when and/or the type of adapter 30 coupled to the handle 20.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope of the claims appended hereto.

Claims
  • 1. A surgical system comprising: an adapter including a distal end portion;a plurality of different types of loading units each configured to releasably couple to the distal end portion of the adapter, each of the loading units having a magnet attached thereto;a GMR IC disposed within the adapter and configured to output a differential voltage in response to a unique magnetic field produced by the magnet of the loading unit that is attached to the adapter, wherein the differential voltage produced by the GMR IC is indicative of the type of loading unit coupled to the adapter;an operational amplifier; anda latch, the operational amplifier configured to receive the differential voltage from the GMR IC and transmit an amplified output to the latch, the latch having a first state when the amplified output is below a threshold and a second state when the amplified output is above the threshold.
  • 2. The surgical system according to claim 1, wherein each of the loading units includes a proximal end portion configured to be selectively received within the distal end portion of the adapter.
  • 3. The surgical system according to claim 1, wherein each of the magnets is embedded within the corresponding loading unit.
  • 4. The surgical system according to claim 3, wherein the GMR IC is embedded within the distal end portion of the adapter.
  • 5. The surgical system according to claim 1, further comprising a microprocessor configured to receive the differential voltage from the GMR IC.
  • 6. The surgical system according to claim 1, wherein the amplified output is below the threshold when the adapter is unconnected to any of the loading units and above the threshold when the adapter is coupled to one of the loading units.
  • 7. The surgical system according to claim 1, wherein the operation amplifier and latch are integrated with the GMR IC.
  • 8. The surgical system according to claim 1, further comprising a handle configured to detachably couple to a proximal end portion of the adapter.
  • 9. A surgical system comprising: a handle;an adapter configured to couple to the handle and including a translating element;a loading unit configured to releasably couple to a distal end portion of the adapter, the loading unit configured to translate the translating element of the adapter proximally as the loading unit is being coupled to the adapter;a magnet attached to the translating element of the adapter and configured to translate with the translating element as the loading unit is coupled to the adapter;a GMR IC embedded within the handle or the adapter, the GMR IC configured to output a differential voltage in response to a magnetic field produced by the magnet, wherein the differential voltage produced by the GMR IC is indicative of a position of the loading unit relative to the adapter;an operational amplifier; anda latch, the operational amplifier configured to receive the differential voltage from the GMR IC and transmit an amplified output to the latch, the latch having a first state when the amplified output is below a threshold and a second state when the amplified output is above the threshold.
  • 10. The surgical system according to claim 9, wherein the adapter defines a receiver and the loading unit includes a connector, the connector configured to be received within the receiver to releasably couple the loading unit to the adapter.
  • 11. The surgical system according to claim 10, wherein the magnet is embedded within the translating element of the adapter.
  • 12. The surgical system according to claim 11, wherein the GMR IC is embedded within the receiver of the adapter.
  • 13. The surgical system according to claim 10, wherein the amplified output is below the threshold when the connector is in an uncoupled state with the receiver and above the threshold when the receiver is in a coupled state with the receiver.
  • 14. The surgical system according to claim 9, wherein the operation amplifier and latch are integrated with the GMR IC.
  • 15. The surgical system according to claim 9, further comprising a microprocessor disposed within the handle, the microprocessor configured to receive a signal from the GMR IC indicative of the position of the loading unit relative to the adapter.
  • 16. The surgical system according to claim 15, wherein the signal received by the microprocessor is indicative of the type of loading unit.
  • 17. A surgical system comprising: a handle;an adapter configured to couple to the handle and including a translating element;a loading unit configured to releasably couple to a distal end portion of the adapter, the loading unit configured to translate the translating element of the adapter proximally as the loading unit is being coupled to the adapter;a magnet attached to the translating element of the adapter and configured to translate with the translating element as the loading unit is coupled to the adapter;a GMR IC embedded within the handle or the adapter, the GMR IC configured to output a differential voltage in response to a magnetic field produced by the magnet, wherein the differential voltage produced by the GMR IC is indicative of a position of the loading unit relative to the adapter;an instrument amplifier; anda filter, the instrument amplifier configured to receive the differential voltage from the GMR IC and output an amplified signal to the filter, wherein the filter is configured to output a filtered signal indicative of the position of the loading unit relative to the adapter and a type of the loading unit coupled to the adapter.
  • 18. The surgical system according to claim 17, wherein the adapter defines a receiver and the loading unit includes a connector, the connector configured to be received within the receiver to releasably couple the loading unit to the adapter.
  • 19. The surgical system according to claim 18, wherein the magnet is embedded within the translating element of the adapter.
  • 20. The surgical system according to claim 19, wherein the GMR IC is embedded within the receiver of the adapter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 16/043,230, filed on Jul. 24, 2018, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/549,294, filed on Aug. 23, 2017, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (400)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5632432 Schulze et al. May 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6326884 Wohlrabe Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8443476 Hilscher et al. May 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
10772700 Pantazis Sep 2020 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20100268250 Stuart et al. Oct 2010 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110208170 Hafner et al. Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130075443 Giordano et al. Mar 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140005681 Gee et al. Jan 2014 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140144970 Aranyi et al. May 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150209035 Zemlok Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (79)
Number Date Country
2008229795 Apr 2009 AU
2451558 Jan 2003 CA
102247182 Nov 2011 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
0705571 Apr 1996 EP
1690502 Aug 2006 EP
1723913 Nov 2006 EP
1736112 Dec 2006 EP
1769754 Apr 2007 EP
1772105 Apr 2007 EP
1813199 Aug 2007 EP
1813203 Aug 2007 EP
1813211 Aug 2007 EP
1943954 Jul 2008 EP
1943956 Jul 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2100562 Sep 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2263568 Dec 2010 EP
2272443 Jan 2011 EP
2316345 May 2011 EP
2324776 May 2011 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2684530 Jan 2014 EP
2923653 Sep 2015 EP
2992839 Mar 2016 EP
3064146 Sep 2016 EP
2333509 Feb 2010 ES
08038488 Feb 1996 JP
2005125075 May 2005 JP
2016011864 Jan 2016 JP
2016198491 Dec 2016 JP
2017109089 Jun 2017 JP
2017513557 Jun 2017 JP
20120022521 Mar 2012 KR
9915086 Apr 1999 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03013372 Feb 2003 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
03065916 Aug 2003 WO
03077769 Sep 2003 WO
03090630 Nov 2003 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007016290 Feb 2007 WO
2007026354 Mar 2007 WO
2007137304 Nov 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2009143092 Nov 2009 WO
2009149234 Dec 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
2014134027 Sep 2014 WO
Non-Patent Literature Citations (2)
Entry
European Search Report dated Apr. 9, 2019, issued in EP Appln. No. 18190152.
Japanese Office Action dated Jul. 20, 2022, issued in corresponding Japanese Appln. No. 2018-153105, 7 pages.
Related Publications (1)
Number Date Country
20200375687 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62549294 Aug 2017 US
Continuations (1)
Number Date Country
Parent 16043230 Jul 2018 US
Child 16999202 US