1. Field of the Invention
The present invention relates to a power supply approach, and more particularly, to a contactless power supply system and method thereof.
2. Description of the Prior Art
Please refer to
In addition, the prior art charger 100 usually charges one uncharged device 102 at the same time. This situation has limitations of one-to-one use, and consequently, the prior art charger 100 does not charge many uncharged device 102 at the same time. When a user carries many uncharged devices charged through the charge approach shown in
It is therefore one of the objectives of the claimed invention to provide a contactless power supply system and method thereof, to solve the above-mentioned problems and enhance image quality.
According to one embodiment of the claimed invention, a contactless power supply system is disclosed. The contactless power supply comprises a power supply device having a first sensor module configured for outputting a first wireless signal, and a plurality of application devices for receiving the first wireless signal simultaneously. Each application device of the plurality of application devices comprises a second sensor module for receiving the first wireless signal and transforming the first wireless signal into a corresponding induced power.
According to yet another embodiment of the present invention, an application device with a contactless power supply is disclosed. The application device comprises a sensor module for receiving a wireless signal and transforming the wireless signal into a corresponding induced power, a battery module, and a charge module. The charge module is coupled to the sensor module and the battery module, and is for charging the battery module according to the corresponding induced power.
According to yet another embodiment of the present invention, a method for contactless power supply is further disclosed. The method comprises outputting a wireless signal to a plurality of application devices simultaneously and transforming the received wireless signal into an induced power corresponding to the each of the plurality of the application devices.
According to yet another embodiment of the present invention, a method for contactless power supply is further disclosed. The method comprises receiving a wireless signal and transforming the wireless signal into a corresponding induced power, and charging a battery module according to the corresponding induced power.
In conclusion, users may utilize a charger to charge the plurality of uncharged devices for one-to-many via the contactless power supply system and method thereof provided by the present invention. As a result, it enhances the convenience of using the charger. The method for contactless power supply not only avoids the limitation of various plugs due to product design, however, but also prevents problems of incompatibility for plugs of the chargers. As a result, the contactless power supply system and method thereof provided by the present invention may integrate various types of products into a set of the power supply system.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” The terms “couple” and “couples” are intended to mean either an indirect or a direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
Please refer to
It should be noted that, as shown in
Please refer to
It should be noted that the first processing module 204 of the power supply device 200 shown in
In an operation example of the present invention, the contactless power supply system 20 further performs data exchange between the power supply device 200 and the application devices 210a, 210b and 210c except for the contactless power supply. First, the first processing module 204 controls the first sensor module 202 to send a first message (for example, multimedia or other type of data), via the first wireless signal. Then the application devices 210a, 210b and 210c receive the first wireless signal carrying the first message via the second sensor module 212. At present, the second sensor module 212 generates an induced power according to the first wireless signal, and the second processing module 214 retrieves the first message from the first wireless signal received by the second sensor module 212. Subsequently, for the application devices 210a, 210b and 210c, the second processing module 214 further generates a second message (again using multimedia or some other type of data as an example), and controls the second sensor module 212 to send the second message via a second wireless signal. The power supply device 200 receives the second wireless signal carrying with the second message via the first sensor module 202. And then, the first processing module 204 retrieves the second message from the second wireless signal received by the first sensor module 202. Please note that the second wireless signal, without limitation, may be in the form of a radio frequency (RF) signal, an infrared wave signal, a microwave signal, or a Bluetooth signal.
It should be noted that, in this alternative design of the present invention, when the power supply device 200 is a multimedia player (i.e. the power supply device 200 is implemented in a device that plays multimedia data) and the second message is a multimedia data (an audio stream or video stream, for example), then the second message is displayed by the first processing module 202 of the power supply device 200. In another alternative design of the present invention, the application devices 210a, 210b and 210c are multimedia players and the first message is multimedia data (audio streams or video streams), where the first message is displayed by the second processing module 214. Please note that these aforementioned alternative designs all fall within the scope of the present invention.
In another operation example of the present invention, the contactless power supply system 20 further performs device identification between the power supply device 200 and the application devices 210a, 210b and 210c, except for the contactless power supply. In this embodiment, a first message generated by the first processing module 204 is an identification command, and the processing module 204 controls the first sensor module 202 to send the first message (identification) via a first wireless signal. Then the application devices 210a, 210b and 210c receive the first wireless signal carrying with the first message (identification request) via the second sensor module 212. At this time, the second sensor module 212 generates an induced power according to the first wireless signal, and the second processing module 214 retrieves the first message from the first wireless signal received by the second sensor module 212. For application devices 210a, 210b and 210c, the second processing module 214 controls the second sensor module 212 to send a second message via a second wireless signal according to the received identification command. For example, the second message contains identification information corresponding to the application devices 210a, 210b and 210c, and the identification information may comprise (for instance and without limitation) power information and an identification code. The power supply device 200 receives the second wireless signal carrying the second message (identification information) through the first sensor module 202. Lastly, the first processing module 204 retrieves the second message from the second wireless signal received by the first sensor module 202, obtains information on which of the application devices support the contactless power supply function, or which of the application devices 210a, 210b and 210c within the receiving range of the first processing module 204 need to be charged, and performs applicable controls for the application devices.
For example, an application of the above-mentioned identification operation is utilized to perform contactless power supply control for the application devices 210a, 210b and 210c, i.e. through a second message (comprising power information and an identification code) returned by the application devices 210a, 210b and 210c. The power supply device 200 may obtain which battery module of the application device is currently in a low power status (for example, the battery module 308 shown in
In the present invention, any combination (without limitation) of the charge operation, data exchange operation and identification operation are synchronously performed between the power supply device 200 and each of the application devices 210a, 210b and 210c. Furthermore, without limitation, operations of charge, data exchange and identification are asynchronously performed between the power supply device 200 and each of the application devices 210a, 210b and 210c. It should be noted that the operations mentioned above are for illustrative purposes only and are not meant to be limitations of the present invention.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
096129858 | Aug 2007 | TW | national |