Contacts for an n-type gallium and nitrogen substrate for optical devices

Information

  • Patent Grant
  • 8994033
  • Patent Number
    8,994,033
  • Date Filed
    Tuesday, July 9, 2013
    11 years ago
  • Date Issued
    Tuesday, March 31, 2015
    9 years ago
Abstract
A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.
Description
BACKGROUND

A metric for the efficiency of light emitting diodes (LEDs) is the luminance per watt. The luminance provided by light emitting diodes depends on several factors such as internal quantum efficiency, which quantifies the fraction of injected carriers converted to photons, and extraction efficiency, which quantifies the fraction of photons successfully extracted from the light emitting diode. Internal absorption may prevent photons from escaping the light emitting diode. To realize high efficiency LEDs, both the internal efficiency and extraction efficiency should be optimized. The potential gains from improving extraction efficiency, however, are likely to be greater and simpler to accomplish than are gains from improving internal efficiency.


From the above, it can be appreciated that improved techniques for manufacturing optical devices are highly desired.


SUMMARY

The present invention relates to techniques for manufacturing optical devices. More particularly, the present invention is directed to light emitting diodes and in particular to ohmic contacts for light emitting diodes.


In an example, the present invention provides a method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The front side surface includes an n-type material overlying the substrate member, an active region overlying the n-type material, and a p-type material overlying the active region. The method includes subjecting the backside surface to a polishing process, causing a backside surface characterized by a surface roughness. The method also includes subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface. The method includes treating the backside surface, comprised of a plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method forms a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.


In an example, the present invention provides an optical device, e.g., a LED device. The device has a gallium and nitrogen containing substrate member comprising a backside surface and a front side surface, which includes an n-type material overlying the substrate member, an active region overlying the n-type material, and a p-type material overlying the active region. The device has a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface and a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.


In an example, the backside surface is characterized by a nitrogen face of a c-plane and an n-type GaN with carrier concentration ranging from 1E15/cm3 to 1E20/cm3. In an example, the surface roughness ranges from about 0.3 nm to 200 nm. In an example, each of the plurality of pyramid-like structures has a height from about 20 nm to 1000 nm. In an example, the active region is configured to emit electromagnetic radiation in a range of 450 nm to 480 nm. In an example, the active region comprises a plurality of quantum well structures. In an example, each of the pyramid-like structures comprises three sides or two or more sides.


Various additional objects, features, and advantages of the present invention can be more fully appreciated with reference to the detailed description and accompanying drawings that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified diagram of an n-type c-plane GaN substrate with an epitaxial LED structure (n-layer, active region, p-layer) according to embodiments of the present invention.



FIG. 2 illustrates polishing of the n-type c-plane GaN substrate with a diamond slurry to form an optically smooth (RMS surface roughness 100 nm or less) backside surface according to embodiments of the present invention.



FIG. 3 shows a substrate with an optically smooth nitrogen face of c-plane GaN, prepared by polishing or by lapping and polishing according to embodiments of the present invention.



FIG. 4 shows an n-GaN surface roughened by exposure to a solution of silicic acid hydrate, potassium hydroxide, and water according to embodiments of the present invention.



FIG. 5 shows a scanning electron microscope image of a roughened n-GaN surface after exposure to a solution of silicic acid hydrate, potassium hydroxide, and water according to embodiments of the present invention.



FIG. 6 shows a n-GaN surface etched by SiCl4 plasma according to embodiments of the present invention.



FIG. 7 shows an illustration of a photoresist-patterned substrate treated with an oxygen plasma, followed by a SiCl4 plasma treatment (when the n-contacts will be patterned using a lift-off process) according to embodiments of the present invention.



FIGS. 8A and 8B illustrate a process for hydrochloric acid (HCl) treatment of an n-GaN surface, with or without patterned photoresist, according to embodiments of the present invention.



FIGS. 9A and 9B are illustrations of metal layers deposited on the n-GaN surface (the stack begins with a first layer of Al or Ti, followed by a barrier layer) according to embodiments of the present invention.



FIG. 10 illustrates a device structure after photoresist and unwanted metal are removed in a liftoff process according to embodiments of the present invention.



FIG. 11 illustrates a metal annealing process to reduce the contact resistance according to embodiments of the present invention.



FIG. 12 illustrates an example of current as a function of voltage between two aluminum contacts on an n-GaN surface treated according to method provided by the present disclosure, compared to contacts to an untreated n-GaN surface.





DETAILED DESCRIPTION

The present invention relates to techniques for manufacturing optical devices. More particularly, the present invention includes light emitting diodes and in particular, ohmic contacts for light emitting diodes. Such light emitting devices can include LEDs, lasers and the like.


As background, we have observed that conventional GaN-based light emitting diodes (LED) emitting in the ultraviolet and visible regions are based on heteroepitaxial growth where growth is initiated on a substrate other than GaN such as sapphire, silicon carbide, or silicon. This is due to the limited supply and high cost of free-standing GaN substrates, which has prevented their viability for use in high volume LED manufacture. However, the field of bulk-GaN technology has seen rapid gains over the past couple of years providing promise for large-scale deployment into LED manufacture. Such a technology shift will provide huge benefits to LED performance and manufacturing.


Light extraction of LEDs emitting in the visible portion of the spectrum, such as gallium nitride (GaN) LEDs, can be improved with high reflectivity metallurgies, which are typically mounted to one side of the LED. A desirable electrical contact to a GaN-based device has a reduced impact on the operating voltage of the device. This can be accomplished with the use of ohmic contacts. Thus, a desirable metal contact to an LED is both ohmic and highly reflective. A common approach for making contacts to p-GaN is to use a silver-containing layer. Silver is desirable because of its high reflectance across a large portion of the visible spectrum. Though highly reflective, silver does not make good electrical contacts to n-GaN. The carrier energies in n-GaN dictates that a metal with a different work function be used to provide ohmic contacts. However, metal reflectivity and work function are not the sole concerns of ohmic contact formation. The processing method should also address surface contamination, and in the case of GaN, relative amounts of exposed Ga and N atoms at the surface. Therefore, making metal contacts to GaN LEDs is a complex endeavor that should take into consideration optical and electrical metal properties, semiconductor crystal properties and surface chemistry.


Progress has been made during the past decade and a half in the performance of gallium nitride (GaN) based light emitting diodes (LEDs). Devices with a luminous efficiency greater than 100 lumens per watt have been demonstrated in the laboratory, and commercial devices have an efficiency that is already considerably superior to that of incandescent lamps and is competitive with fluorescent lamps. Further improvements in efficiency can reduce operating costs, reduce electricity consumption, and decrease emissions of carbon dioxide and other greenhouse gases produced in generating the energy used for lighting applications.


In an embodiment, a method of producing an ohmic contact to n-type GaN is provided. This method involves three steps, starting with a polished GaN surface: an alkaline treatment, a plasma treatment, and an acid treatment. The alkaline treatment can be central to the success of the method because it produces fine scale roughness that exposes alternate crystal facets, which may be more favorable to ohmic contact formation. The plasma treatment and acid treatment are more in line with conventional surface cleaning methods before metal deposition.


Ohmic contacts are desirable for manufacturing LEDs with high electrical efficiency. There have been attempts to manufacture contacts to LEDs using different metallization pretreatments, metal thin film stacks, and annealing treatments to obtain ohmic contacts to n-type and p-type GaN. For LEDs, it is also desirable to have an ohmic contact metal with high reflectivity. In addition, lower annealing temperatures are generally favored.


For example, a present method for fabricating a device with an ohmic n-contact includes laser scribing Ti/Au contacts. This method forms (e.g., cuts, etches, patterns, drills, machines) trenches into the n-contacts approximately 10 microns to 30 microns deep. The laser scribe effectively anneals the n-contact metal at a very high temperature and mixes it into the GaN. However, the trenches become filled with a high optical loss metal alloy, and the surface of the contacts become covered with burned metal which makes it difficult to test the contacts and impacts wire-bond yield and reliability due to gradual intermetallic reactions. This disclosure describes a method for achieving low contact resistance to n-type GaN using a chemical solution that produces a small-scale (height<0.1 micron; pitch<2 microns) roughness on the GaN surface. Further details of the present invention can be found throughout the present specification and more particularly below.



FIG. 1 is a simplified diagram of an n-type c-plane GaN substrate 101 with epitaxial LED structure (n-layer 102, active region 103, p-layer 104) according to embodiments of the present invention. As shown, the method begins with a gallium and nitrogen containing substrate member. The substrate includes a backside surface 105 and a front side surface 106. The front side surface includes an n-type material overlying the substrate member, an active region overlying the n-type material, and a p-type material overlying the active region. Preferably, the active region has one or more quantum wells that emit light at visible or ultraviolet wavelengths.



FIG. 2 illustrates polishing of n-type substrate 201 with diamond slurry until optically smooth (RMS surface roughness 100 nm or less) according to embodiments of the present invention. As shown, the method includes subjecting the backside surface 206 to polishing process to cause the backside surface characterized by a surface roughness of 100 nanometers RMS. Wafers are mounted on a rotating plate 207, which sits on a large polyurethane impregnated polyester felt polishing pad 208. The polishing pad is rotated at rate ranging from about 5 rpm to 200 rpm or about 60 rpm and others, while the plate with the wafers rotates at about 1 rpm to 25 rpm and in certain embodiments about 10 rpm. A slurry mixture is a suspension of suitably-sized abrasive particles ranging in size from about 0.05 μm to 5 μm, and in certain embodiments 1 μm diamond particles or other abrasive species such as other metals, semiconductors, conductors and their combinations e.g., SiC, diamond, Al2O3, or GaN. The slurry mixture also includes a neutral solvent such as water and/or alcohol and can also be acidic or basic. The slurry mixture is dispensed onto the polishing pad during the method.



FIG. 3 shows a substrate 301 with an optically smooth nitrogen face of c-plane GaN surface, prepared by polishing or by lapping and polishing according to embodiments of the present invention. As shown, the optically smooth nitrogen face is characterized by a surface roughness of between 200 nm RMS and 0.3 nm RMS. As used herein, the term nitrogen face means an outermost and/or surface region and/or layer of atoms comprising substantially of nitrogen atoms, although there may be some variations, or other meanings consistent with the understanding of one of ordinary skill of the art. As an example, a nitrogen face can include an exposed c-plane.



FIG. 4 shows an n-GaN surface 405 roughened by exposure to a solution of silicic acid hydrate, potassium hydroxide (KOH), and water according to embodiments of the present invention. The solution of silicic acid hydrate, KOH, and water are mixed in the proportion of about 60 g silicic acid hydrate per liter of 9% KOH solution. The height and pitch of the roughness can be controlled by the silicic acid and KOH concentrations. The temperature of the etchant is held at 60° C. The etchant can be continuously agitated to provide uniformity of roughness. Although the method used a selected chemistry and conditions for the etchant, there can be variations. For example, the acid can also be boric acid, chlorosulfonic acid, sulfamic acid, or others. As shown, the method subjects the backside surface to crystal plane dependent etching process to form a plurality of pyramid-like structures formed spatially in an even manner on the backside surface, as further shown by the Figure below. Each of the pyramid-like structures generally includes at least 6 sides configured and extending from an apex to a base region. The pyramid-like structures are configured such that each of the base regions substantially cover a plane in a manner where the base regions are coupled to each other without exposing the plane. At least 80% of the pyramid-like structures have a base region having a normalized size ranging from 0.3 to 3 relative to the median base size. In one example, the median base size is 0.5 μm. The plurality of the pyramid-like structures can form a non-periodic spatial pattern, although there may be variations. In an example, the distance between the base and the apex is twice the length of the base.



FIG. 5 shows a scanning electron microscope image of a roughened n-GaN surface after exposure to a solution of silicic acid hydrate, KOH, and water according to embodiments of the present invention.



FIG. 6 shows a n-GaN surface 605 etched by a SiCl4 plasma 607 according to embodiments of the present invention. Although the SiCl4-based plasma is described, there can be variations. As shown, the method treats the backside surface comprising the plurality of pyramid-like structures to a plasma treatment. The plasma can be created by applying a bias voltage across SiCl4 gas. In this example, the subject plasma treatment processes the roughened GaN surface to achieve an ohmic contact. It is believed that the plasma surface treatment alters a chemical characteristic of the roughened GaN surface to facilitate the ohmic contact formation.



FIG. 7 shows an illustration of a photoresist-patterned substrate treated with an oxygen plasma, followed by a SiCl4 plasma treatment (when the n-contacts will be patterned using a lift-off process) according to an embodiment of the present invention. As shown, the photoresist patterned wafer 705 is exposed to an oxygen plasma 702, which removes residual organic contaminants in the contact windows. This is followed by a SiCl4 plasma treatment. The present technique using the oxygen plasma provides a residue-free surface.



FIGS. 8A and 8B illustrate a process for HCl treatment of an n-GaN surface, with (FIG. 8A) or without (FIG. 8B) patterned photoresist according to embodiments of the present invention. The method subjects the n-GaN surface 805 to hydrochloric acid 807. Typically the HCl is an aqueous solution with a concentration of 38% by weight and may be diluted. Other treatments including acids of other types may be used. This surface treatment may be performed at room temperature or elevated temperatures, and extends for 1 minutes to 20 minutes in duration in an example. In this example, the subject acid treatment processes the roughened GaN surface to achieve an ohmic contact. It is believed that the acid treatment alters a chemical characteristic of the roughened GaN surface to facilitate ohmic contact formation.



FIGS. 9A and 9B are an illustrations of metal layers deposited on the n-GaN surface 905, without (FIG. 9A) and with (FIG. 9B) patterned photoresist. A stack or single layer begins with a first layer 906 of Al or Ti according to embodiments of the present invention. The stack can include any combination of suitable conductive materials with barrier and/or glue layers 907. The stack can be a homogeneous structure, a graded structure or composed of discrete stacked regions or any combination of the aforementioned and the like. Other suitable metals may be used, including Zn, Ag, Au, W, Cr, Ni, or others including, but not limited to, alloys. As shown, the method includes a blanket deposition of contact material comprising an aluminum bearing species or a titanium bearing species overlying the treated n-GaN surface to form a plurality of LED devices using this contact material.



FIG. 10 illustrates the resultant patterned metal on a substrate where organic solvents can be used to remove photoresist and unwanted metal in a liftoff process according to embodiments of the present invention. As an example, suitable solvents include N-methyl-2-pyrrolidone (NMP) or acetone followed by methanol and isopropanol. Other processes may be used to pattern the metal, including an etch-back process.



FIG. 11 illustrates a process for metal annealing to lower the contact resistance according to embodiments of the present invention. The final contact structure is subjected to annealing in a nitrogen or forming gas (nitrogen and hydrogen) environment. The temperature can range from 200° C. to 450° C.



FIG. 12 illustrates the current between two aluminum contacts on n-GaN for varying voltage. The first curve (1) shows a typical result when aluminum is placed on n-GaN without chemical roughening treatment or plasma exposure. The second curve (2) shows the improvement when the surface is exposed to silicic acid/KOH roughening solution, SiCl4 plasma treatment, and HCl cleaning The third curve (3) shows the result when the contacts in curve 2 are annealed at 340° C. for 5 s. In an example, the diagram relates to current-voltage curves for a pair of aluminum contacts on n-GaN. Curve (1) contacts received no surface roughening or annealing. Curve (2) contacts were not annealed. Curve (3) contacts received the complete sequence of steps.


In an example, the present method includes the following sequence of steps.


(1) Lap and polish the nitrogen face of c-plane, n-type GaN with carrier concentration 1E18/cm3.


(2) Mix a silicic acid-potassium hydroxide solution, with the composition of 14.6 g of silicic acid hydrate, 20 mL of 45% KOH solution, and 100 mL of water.


(3) Immerse the substrate in the silicic acid-potassium hydroxide solution for 15 min at 60° C.


(4) Perform standard n-contact liftoff lithography.

    • a. Lithography is not required except to form the contact pattern. This step may be omitted and a blanket deposition/etchback used.


(5) Descum (optional). May be ozone clean, oxygen plasma, or no treatment.


(6) Expose the sample to SiCl4 plasma.

    • a. Reactive ion etching at 400 W and 30 mTorr SiCl4.


(7) Deionized water rinse.


(8) Immerse the sample in HCl (37%) for 5 min.


(9) Deionized rinse.


(10) Deposit contact metallization, such as evaporated aluminum, aluminum/nickel/gold, or titanium/gold.


(11) Anneal. Depending on the treatment conditions, contacts are ohmic as deposited, or mild annealing between 200° C. and 450° C. to produce ohmic contacts.


This sequence of steps is merely illustrative, and should not limit the scope of the claims herein. Depending upon the embodiment, the steps may be further combined, or other steps may be added. Alternatively, the steps may be reordered, depending upon the embodiment.


GaN substrates that underwent plasma exposure only, or acid clean only, had high-resistance contacts. Plasma exposures included both SiCl4 plasma and chlorine-based plasmas. Acid cleans included HCl, buffered oxide etch, and HF. GaN substrates with both plasma exposure and acid clean sometimes had ohmic contacts as deposited, but these changed to high-resistance contacts on mild annealing (340° C., 5 s). Substrates with alkaline clean, plus plasma treatment and acid dip, had generally high resistance contact as-deposited, but the contact resistance dropped below the current laser-scribed value after a 340° C., 5 s anneal. It should be understood that the description recited above is an example of the invention and that modifications and changes to the examples may be undertaken which are within the scope of the claimed invention. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements, including a full scope of equivalents.

Claims
  • 1. A light emitting diode (LED) device, comprising: a gallium and nitrogen containing substrate member comprising a backside surface and a front side surface, the front side surface comprising an n-type material overlying the substrate member, an active region overlying the n-type material, and a p-type material overlying the active region; anda plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface; anda contact material comprising an aluminum bearing species or a titanium bearing species overlying the plurality of pyramid-like structures,wherein the plurality of pyramid like structures comprises a surface treated with a plasma species followed by treatment with an acid.
  • 2. The device of claim 1, wherein the backside surface is characterized by a nitrogen face of a c-plane and an n-type GaN with a carrier concentration from 1E15/cm3 to 1 E20/cm3.
  • 3. The device of claim 1, wherein each of the plurality of pyramid-like structures is characterized by a height from 20 nm to 1000 nm.
  • 4. The device of claim 1, wherein the active region is configured to emit electromagnetic radiation in a range of 450 nm to 480 nm.
  • 5. The device of claim 1, wherein the active region comprises a plurality of quantum well structures.
  • 6. The device of claim 1, wherein each of the plurality of pyramid-like structures comprises three sides.
  • 7. The device of claim 1, wherein each of the plurality of pyramid-like structures comprises two or more sides.
  • 8. The device of claim 1, wherein the plasma species is a SiCl4 plasma.
  • 9. The device of claim 1, wherein the acid is hydrochloric acid.
US Referenced Citations (284)
Number Name Date Kind
4065688 Thornton Dec 1977 A
4066868 Witkin et al. Jan 1978 A
4350560 Helgeland et al. Sep 1982 A
4581646 Kubodera Apr 1986 A
4870045 Gasper et al. Sep 1989 A
5169486 Young et al. Dec 1992 A
5331654 Jewell et al. Jul 1994 A
5607899 Yoshida et al. Mar 1997 A
5632812 Hirabayashi May 1997 A
5764674 Hibbs-Brenner et al. Jun 1998 A
5813753 Vriens et al. Sep 1998 A
6335771 Hiraishi Jan 2002 B1
6498355 Harrah et al. Dec 2002 B1
6501154 Morita et al. Dec 2002 B2
6509651 Matsubara et al. Jan 2003 B1
6533874 Vaudo et al. Mar 2003 B1
6547249 Collins, III et al. Apr 2003 B2
6680959 Tanabe et al. Jan 2004 B2
6734461 Shiomi et al. May 2004 B1
6809781 Setlur et al. Oct 2004 B2
6853010 Slater, Jr. et al. Feb 2005 B2
6864641 Dygert Mar 2005 B2
6956246 Epler et al. Oct 2005 B1
6989807 Chiang Jan 2006 B2
7009199 Hall Mar 2006 B2
7012279 Wierer, Jr. et al. Mar 2006 B2
7081722 Huynh et al. Jul 2006 B1
7083302 Chen et al. Aug 2006 B2
7113658 Ide et al. Sep 2006 B2
7128849 Setlur et al. Oct 2006 B2
7253446 Sakuma et al. Aug 2007 B2
7279040 Wang Oct 2007 B1
7285801 Eliashevich et al. Oct 2007 B2
7303630 Motoki et al. Dec 2007 B2
7318651 Chua et al. Jan 2008 B2
7341880 Erchak et al. Mar 2008 B2
7348600 Narukawa et al. Mar 2008 B2
7358542 Radkov et al. Apr 2008 B2
7358543 Chua et al. Apr 2008 B2
7390359 Miyanaga et al. Jun 2008 B2
7419281 Porchia et al. Sep 2008 B2
7470938 Lee et al. Dec 2008 B2
7483466 Uchida et al. Jan 2009 B2
7489441 Scheible et al. Feb 2009 B2
7560981 Chao et al. Jul 2009 B2
7622742 Kim et al. Nov 2009 B2
7733571 Li Jun 2010 B1
7816238 Osada et al. Oct 2010 B2
7858408 Mueller et al. Dec 2010 B2
7862761 Okushima et al. Jan 2011 B2
7871839 Lee et al. Jan 2011 B2
7884538 Mitsuishi et al. Feb 2011 B2
7906793 Negley Mar 2011 B2
7923741 Zhai et al. Apr 2011 B1
8044412 Murphy et al. Oct 2011 B2
8044609 Liu Oct 2011 B2
8142566 Kiyomi et al. Mar 2012 B2
8188504 Lee May 2012 B2
8198643 Lee et al. Jun 2012 B2
8207548 Nagai Jun 2012 B2
8207554 Shum Jun 2012 B2
8247886 Sharma et al. Aug 2012 B1
8247887 Raring et al. Aug 2012 B1
8252662 Poblenz et al. Aug 2012 B1
8269245 Shum Sep 2012 B1
8293551 Sharma et al. Oct 2012 B2
8310143 Van De Ven et al. Nov 2012 B2
8314429 Raring et al. Nov 2012 B1
8324840 Shteynberg et al. Dec 2012 B2
8350273 Vielemeyer Jan 2013 B2
8362603 Lim et al. Jan 2013 B2
8404071 Cope et al. Mar 2013 B2
8410711 Lin et al. Apr 2013 B2
8410717 Shteynberg et al. Apr 2013 B2
8431942 Butterworth Apr 2013 B2
8455894 D'Evelyn et al. Jun 2013 B1
8502465 Katona et al. Aug 2013 B2
8519437 Chakraborty Aug 2013 B2
8524578 Raring et al. Sep 2013 B1
8541951 Shum et al. Sep 2013 B1
8575642 Shum Nov 2013 B1
8575728 Raring et al. Nov 2013 B1
8674395 Shum Mar 2014 B2
8686431 Batres et al. Apr 2014 B2
8704258 Tasaki et al. Apr 2014 B2
8802471 Cich et al. Aug 2014 B1
20010009134 Kim et al. Jul 2001 A1
20010022495 Salam Sep 2001 A1
20010043042 Murazaki et al. Nov 2001 A1
20010055208 Kimura Dec 2001 A1
20020070416 Morse et al. Jun 2002 A1
20020088985 Komoto et al. Jul 2002 A1
20020096994 Iwafuchi et al. Jul 2002 A1
20020127824 Shelton et al. Sep 2002 A1
20020155691 Lee et al. Oct 2002 A1
20020182768 Morse et al. Dec 2002 A1
20030000453 Unno et al. Jan 2003 A1
20030001238 Ban Jan 2003 A1
20030020087 Goto et al. Jan 2003 A1
20030047076 Liu Mar 2003 A1
20030080345 Motoki et al. May 2003 A1
20030164507 Edmond et al. Sep 2003 A1
20040070004 Eliashevich et al. Apr 2004 A1
20040080256 Hampden-Smith et al. Apr 2004 A1
20040104391 Maeda et al. Jun 2004 A1
20040116033 Ouderkirk et al. Jun 2004 A1
20040124435 D'Evelyn et al. Jul 2004 A1
20040161222 Niida et al. Aug 2004 A1
20040190304 Sugimoto et al. Sep 2004 A1
20040201598 Eliav et al. Oct 2004 A1
20040207998 Suehiro et al. Oct 2004 A1
20040227149 Ibbetson et al. Nov 2004 A1
20040245543 Yoo Dec 2004 A1
20040251471 Dwilinski et al. Dec 2004 A1
20050001227 Niki et al. Jan 2005 A1
20050045894 Okuyama et al. Mar 2005 A1
20050084218 Ide et al. Apr 2005 A1
20050087753 D'Evelyn et al. Apr 2005 A1
20050121679 Nagahama et al. Jun 2005 A1
20050167680 Shei et al. Aug 2005 A1
20050179376 Fung et al. Aug 2005 A1
20050199899 Lin et al. Sep 2005 A1
20050214992 Chakraborty et al. Sep 2005 A1
20050224830 Blonder et al. Oct 2005 A1
20050263791 Yanagihara et al. Dec 2005 A1
20060006404 Ibbetson et al. Jan 2006 A1
20060038542 Park et al. Feb 2006 A1
20060060131 Atanackovic Mar 2006 A1
20060060872 Edmond et al. Mar 2006 A1
20060068154 Parce et al. Mar 2006 A1
20060079082 Bruhns et al. Apr 2006 A1
20060097385 Negley May 2006 A1
20060118799 D'Evelyn et al. Jun 2006 A1
20060124051 Yoshioka et al. Jun 2006 A1
20060163589 Fan et al. Jul 2006 A1
20060166390 Letertre et al. Jul 2006 A1
20060169993 Fan et al. Aug 2006 A1
20060177362 D'Evelyn et al. Aug 2006 A1
20060180828 Kim et al. Aug 2006 A1
20060186418 Edmond et al. Aug 2006 A1
20060189098 Edmond Aug 2006 A1
20060204865 Erchak et al. Sep 2006 A1
20060208262 Sakuma et al. Sep 2006 A1
20060214287 Ogihara et al. Sep 2006 A1
20060255343 Ogihara et al. Nov 2006 A1
20060261364 Suehiro et al. Nov 2006 A1
20060273339 Steigerwald et al. Dec 2006 A1
20060288927 Chodelka et al. Dec 2006 A1
20070045200 Moon et al. Mar 2007 A1
20070093073 Farrell, Jr. et al. Apr 2007 A1
20070096239 Cao et al. May 2007 A1
20070105351 Motoki et al. May 2007 A1
20070114563 Paek et al. May 2007 A1
20070114569 Wu et al. May 2007 A1
20070121690 Fujii et al. May 2007 A1
20070126023 Haskell et al. Jun 2007 A1
20070131967 Kawaguchi et al. Jun 2007 A1
20070170450 Murphy Jul 2007 A1
20070181895 Nagai Aug 2007 A1
20070202624 Yoon et al. Aug 2007 A1
20070231963 Doan et al. Oct 2007 A1
20070231978 Kanamoto et al. Oct 2007 A1
20070264733 Choi et al. Nov 2007 A1
20070280320 Feezell et al. Dec 2007 A1
20070290224 Ogawa Dec 2007 A1
20080023691 Jang et al. Jan 2008 A1
20080030976 Murazaki et al. Feb 2008 A1
20080054290 Shieh et al. Mar 2008 A1
20080073660 Ohno et al. Mar 2008 A1
20080083929 Fan et al. Apr 2008 A1
20080087919 Tysoe et al. Apr 2008 A1
20080099777 Erchak et al. May 2008 A1
20080106212 Yen et al. May 2008 A1
20080121906 Yakushiji May 2008 A1
20080121913 McKenzie et al. May 2008 A1
20080128752 Wu Jun 2008 A1
20080142781 Lee Jun 2008 A1
20080151543 Wang Jun 2008 A1
20080164489 Schmidt et al. Jul 2008 A1
20080164578 Tanikella et al. Jul 2008 A1
20080173884 Chitnis et al. Jul 2008 A1
20080179607 DenBaars et al. Jul 2008 A1
20080179610 Okamoto et al. Jul 2008 A1
20080192791 Furukawa et al. Aug 2008 A1
20080194054 Lin et al. Aug 2008 A1
20080206925 Chatterjee et al. Aug 2008 A1
20080211416 Negley et al. Sep 2008 A1
20080217745 Miyanaga et al. Sep 2008 A1
20080230765 Yoon et al. Sep 2008 A1
20080237569 Nago et al. Oct 2008 A1
20080261381 Akiyama et al. Oct 2008 A1
20080272463 Butcher et al. Nov 2008 A1
20080282978 Butcher et al. Nov 2008 A1
20080283851 Akita Nov 2008 A1
20080284346 Lee Nov 2008 A1
20080303033 Brandes Dec 2008 A1
20090065798 Masui et al. Mar 2009 A1
20090072252 Son et al. Mar 2009 A1
20090078955 Fan et al. Mar 2009 A1
20090081857 Hanser et al. Mar 2009 A1
20090086475 Caruso et al. Apr 2009 A1
20090140279 Zimmerman et al. Jun 2009 A1
20090146170 Zhong et al. Jun 2009 A1
20090155989 Uematsu et al. Jun 2009 A1
20090173958 Chakraborty et al. Jul 2009 A1
20090194796 Hashimoto et al. Aug 2009 A1
20090206354 Kitano et al. Aug 2009 A1
20090227056 Kyono et al. Sep 2009 A1
20090250686 Sato et al. Oct 2009 A1
20090267098 Choi Oct 2009 A1
20090273005 Lin Nov 2009 A1
20090309110 Raring et al. Dec 2009 A1
20090315480 Yan et al. Dec 2009 A1
20090321745 Kinoshita et al. Dec 2009 A1
20090321778 Chen et al. Dec 2009 A1
20100001300 Raring et al. Jan 2010 A1
20100006873 Raring et al. Jan 2010 A1
20100006876 Moteki et al. Jan 2010 A1
20100025656 Raring et al. Feb 2010 A1
20100032691 Kim Feb 2010 A1
20100055819 Ohba et al. Mar 2010 A1
20100108985 Chung et al. May 2010 A1
20100109030 Krames et al. May 2010 A1
20100117101 Kim et al. May 2010 A1
20100117106 Trottier May 2010 A1
20100117118 Dabiran et al. May 2010 A1
20100148145 Ishibashi et al. Jun 2010 A1
20100148210 Huang et al. Jun 2010 A1
20100149814 Zhai et al. Jun 2010 A1
20100155746 Ibbetson et al. Jun 2010 A1
20100164403 Liu Jul 2010 A1
20100195687 Okamoto et al. Aug 2010 A1
20100200837 Zimmerman et al. Aug 2010 A1
20100200888 Kuhmann et al. Aug 2010 A1
20100220262 DeMille et al. Sep 2010 A1
20100240158 Ter-Hovhannissian Sep 2010 A1
20100244055 Greisen Sep 2010 A1
20100258830 Ide et al. Oct 2010 A1
20100290208 Pickard Nov 2010 A1
20100295088 D'Evelyn et al. Nov 2010 A1
20100309943 Chakraborty et al. Dec 2010 A1
20110017298 Lee Jan 2011 A1
20110038154 Chakravarty et al. Feb 2011 A1
20110056429 Raring et al. Mar 2011 A1
20110057205 Mueller et al. Mar 2011 A1
20110068700 Fan Mar 2011 A1
20110075694 Yoshizumi et al. Mar 2011 A1
20110101350 Greisen May 2011 A1
20110101400 Chu et al. May 2011 A1
20110101414 Thompson et al. May 2011 A1
20110108081 Werthen et al. May 2011 A1
20110124139 Chang May 2011 A1
20110175200 Yoshida Jul 2011 A1
20110177631 Gardner et al. Jul 2011 A1
20110180781 Raring et al. Jul 2011 A1
20110182056 Trottier et al. Jul 2011 A1
20110186860 Enya et al. Aug 2011 A1
20110186874 Shum Aug 2011 A1
20110204324 Kim Aug 2011 A1
20110216795 Hsu et al. Sep 2011 A1
20110266552 Tu et al. Nov 2011 A1
20110279998 Su et al. Nov 2011 A1
20110317397 Trottier et al. Dec 2011 A1
20120007102 Feezell et al. Jan 2012 A1
20120104412 Zhong et al. May 2012 A1
20120135553 Felker et al. May 2012 A1
20120187412 D'Evelyn et al. Jul 2012 A1
20120199841 Batres et al. Aug 2012 A1
20120235201 Shum Sep 2012 A1
20120288974 Sharma et al. Nov 2012 A1
20120299492 Egawa et al. Nov 2012 A1
20120313541 Egawa et al. Dec 2012 A1
20130022758 Trottier Jan 2013 A1
20130026483 Sharma et al. Jan 2013 A1
20130043799 Siu et al. Feb 2013 A1
20130044782 Raring Feb 2013 A1
20130112987 Fu et al. May 2013 A1
20130126902 Isozaki et al. May 2013 A1
20130234108 David et al. Sep 2013 A1
20130313516 David et al. Nov 2013 A1
20130322089 Martis et al. Dec 2013 A1
20140103356 Krames et al. Apr 2014 A1
20140145235 Shum May 2014 A1
20140312373 Donofrio Oct 2014 A1
Foreign Referenced Citations (17)
Number Date Country
2381490 Oct 2011 EP
06-334215 Dec 1994 JP
09-082587 Mar 1997 JP
11-340507 Dec 1999 JP
11-340576 Dec 1999 JP
2001-177146 Jun 2001 JP
2003-031844 Jan 2003 JP
2006-147933 Jun 2006 JP
2007-110090 Apr 2007 JP
2008-084973 Apr 2008 JP
2008-172040 Jul 2008 JP
WO 2006062880 Jun 2006 WO
WO 2009001039 Dec 2008 WO
WO 2009066430 May 2009 WO
WO 2010150880 Dec 2010 WO
WO 2011010774 Jan 2011 WO
WO 2013171286 Nov 2013 WO
Non-Patent Literature Citations (110)
Entry
USPTO Notice of Allowance for U.S. Appl. No. 12/785,953 dated Mar. 20, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Mar. 28, 2014 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/012,674 dated Apr. 30, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Jun. 12, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/304,182 dated May 9, 2014 (12 pages).
USPTO Office Action for U.S. Appl. No. 13/357,578 dated May 13, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/629,366 dated Apr. 18, 2014 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/904,237 dated May 22, 2014 (13 pages).
USPTO Office Action for U.S. Appl. No. 14/171,885 dated Mar. 28, 2014 (8 pages).
Benke et al., ‘Uncertainty in Health Risks from Artificial Lighting due to Disruption of Circadian Rythm and Melatonin Secretion: A Review’, Human and Ecological Risk Assessment: An International Journal, vol. 19, No. 4, 2013, pp. 916-929.
Cich et al., ‘Bulk GaN based violet light-emitting diodes with high efficiency at very high current density’, Applied Physics Letters, Nov. 29, 2012, pp. 223509-1-223509-3.
Csuti et al., ‘Color-matching experiments with RGB-LEDs’, Color Research and Application, vol. 33, No. 2, 2008, pp. 1-9.
Davis et al., ‘Color quality scale’, Optical Engineering, vol. 49, No. 3, Mar. 2010, pp. 033602-1-036602-16.
Hanifin et al., ‘Photoreception for Circadian, Neuroendocrine, and Neurobehavioral Regulation’, Journal of Physiological Anthropology, vol. 26, 2007, pp. 87-94.
Houser et al., ‘Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition’, Optics Express, vol. 21, No. 8, Apr. 19, 2013, pp. 10393-10411.
Iso et al., ‘High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-Plane Bulk GaN Substrate’, Japanese Journal of Applied Physics, 2007, vol. 46, No. 40, pp. L960-L962.
Paper and Board Determination of CIE Whiteness, D65/10 (outdoor daylight), ISO International Standard 11475:2004E (2004), 18 pgs.
Kim et al., ‘High Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays’, Nano Letters, vol. 4, No. 6, 2004, pp. 1059-1062.
International Search Report & Written Opinion of PCT Application No. PCT/US2013/029453, dated Jul. 25, 2013, 11 pages total.
http://www.philipslumileds.com/products/luxeon-flash, ‘LUXEON Flash’, Philips Lumileds, Aug. 8, 2013, pp. 1-2.
Rea et al., ‘White Lighting’, COLOR Research and Application, vol. 38, No. 2, Sep. 3, 2011, pp. 82-92.
Sato et al., ‘Optical Properties of Yellow Light-Emitting Diodes Grown on Semipolar (1122) Bulk GaN Substrate’, Applied Physics Letters, vol. 92, No. 22, 2008, pp. 221110-1-221110-3.
Communication from the Korean Patent Office re 10-2012-7009980 dated Apr. 15, 2013, 6 pages.
Whitehead et al., ‘A Monte Carlo method for assessing color rendering quality with possible application to color rendering standards’, Color Research and Application, vol. 37, No. 1, Feb. 2012, pp. 13-22.
USPTO Office Action for U.S. Appl. No. 12/481,543 dated Jun. 27, 201110 pages.
USPTO Office Action for U.S. Appl. No. 12/491,176 dated Mar. 1, 2012, 10 pages.
USPTO Office Action for U.S. Appl. No. 12/491,176 dated Jul. 19, 2012, 13 pages.
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Dec. 23, 2011, 13 pages.
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Mar. 26, 2013, 18 pages.
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Aug. 13, 2013, 21 pages.
USPTO Office Action for U.S. Appl. No. 12/569,844 dated Oct. 12, 2012, 12 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/569,844 dated Mar. 7, 2013, 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/720,593 dated Jul. 11, 2012, 7 pages.
USPTO Office Action for U.S. Appl. No. 12/749,466 dated Jul. 3, 2012, 18 pages.
USPTO Office Action for U.S. Appl. No. 12/749,476 dated Apr. 11, 2011, 15 pages.
USPTO Office Action for U.S. Appl. No. 12/749,476 dated Nov. 8, 2011, 11 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/749,476 dated May 4, 2012, 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/749,476 dated Jun. 26, 2012, 8 pages.
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Jul. 2, 2012, 12 pages.
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Mar. 7, 2013, 13 pages.
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Sep. 17, 2013, 10 pages.
USPTO Office Action for U.S. Appl. No. 12/879,784 dated Jan. 25, 2012, 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/879,784 dated Apr. 3, 2012, 7 pages.
USPTO Office Action for U.S. Appl. No. 12/914,789 dated Oct. 12, 2011, 8 pagse.
USPTO Office Action for U.S. Appl. No. 12/914,789 dated Feb. 24, 2012, 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/914,789 dated May 17, 2012, 5 pages.
USPTO Office Action for U.S. Appl. No. 12/936,238 dated Aug. 30, 2012, 12 pages.
USPTO Office Action for U.S. Appl. No. 12/936,238 dated Jan. 30, 2013, 12 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/936,238 dated Apr. 16, 2013, 10 pages.
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Nov. 28, 2011, 14 pages.
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Apr. 30, 2012, 14 pages.
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Mar. 30, 2012, 15 pages.
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Jan. 16, 2013, 7 pages.
USPTO Office Action for U.S. Appl. No. 13/025,833 dated Jul. 12, 2012, 16 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/163,482 dated Jul. 31, 2012, 5 pages.
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Aug. 17, 2012, 21 pages.
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Dec. 13, 2012, 24 pages.
USPTO Office Action for U.S. Appl. No. 13/210,769 dated Apr. 4, 2013, 14 pages.
USPTO Office Action for U.S. Appl. No. 13/281,221 dated Jun. 21, 2013, 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/298,905 dated Jun. 11, 2013, 9 pages.
USPTO Office Action for U.S. Appl. No. 13/328,978 dated May 15, 2013, 25 pages.
USPTO Office Action for U.S. Appl. No. 13/465,976 dated Aug. 16, 2012, 17 pages.
USPTO Office Action for U.S. Appl. No. 13/465,976 dated Dec. 20, 2012, 17 pages.
USPTO Office Action for U.S. Appl. No. 13/482,956 dated Aug. 17, 2012, 10 pages.
USPTO Office Action for U.S. Appl. No. 13/482,956 dated Feb. 14, 2013, 16 pages.
USPTO Office Action for U.S. Appl. No. 13/482,956 dated Jul. 22, 2013, 17 pages.
USPTO Office Action for U.S. Appl. No. 13/600,988 dated Jul. 18, 2013, 13 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/600,988 dated Sep. 16, 2013, 9 pages.
Motoki et al., ‘Dislocation reduction in GaN crystal by advanced-DEEP’, Journal of Crystal Growth, vol. 305, Apr. 1, 2007, pp. 377-383.
Communication from the Japanese Patent Office re 2013515583 dated Feb. 27, 2014, 2 pages.
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Feb. 14, 2014, 20 pages.
USPTO Office Action for U.S. Appl. No. 13/012,674 dated Jan. 17, 2014, 15 pages.
USPTO Office Action for U.S. Appl. No. 13/781,633 dated Mar. 6, 2014, 12 pages.
Aguilar, ‘Ohmic n-contacts to Gallium Nitride Light Emitting Diodes’, National Nanotechnologhy Infrastructure Network, 2007, p. 56-81.
Baker et al., ‘Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates’, Japanese Journal of Applied Physics, vol. 44, No. 29, 2005, pp. L920-L922.
Founta et al., ‘Anisotropic Morphology of Nonpolar a-Plane GaN Quantum Dots and Quantum Wells’, Journal of Applied Physics, vol. 102, vol. 7, 2007, pp. 074304-1-074304-6.
Haskell et al., ‘Defect Reduction in (1100) m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phase epitaxy’, Applied Physics Letters 86, 111917 (2005), pp. 1-3.
Lu et al., ‘Etch-Pits of GaN Films with Different Etching Methods’, Journal of the Korean Physical Society, vol. 45, Dec. 2004, p. S673-S675.
Rickert et al., ‘n-GaN Surface Treatments for Metal Contacts Studied Via X-ray Photoemission Spectroscopy’, Applied Physics Letters, vol. 80, No. 2, Jan. 14, 2002, p. 204-206.
Sato et al., ‘High Power and High Efficiency Semipolar InGaN Light Emitting Diodes’, Journal of Light and Visible Environment, vol. 32, No. 2, Dec. 13, 2007, pp. 57-60.
Selvanathan et al., ‘Investigation of Surface Treatment Schemes on n-type GaN and Al 0.20Ga0.80N’, Journal of Vacuum Science and Technology B, vol. 23, No. 6, May 10, 2005, p. 2538-2544.
Semendy et al., ‘Observation and Study of Dislocation Etch Pits in Molecular Beam Epitaxy Grown Gallium Nitride with the use of Phosphoric Acid and Molten Potassium Hydroxide’, Army Research Laboratory, Jun. 2007, 18 pages.
Communication from the Japanese Patent Office re 2012-529969, dated Oct. 15, 2013, (6 pages).
Weaver et al., ‘Optical Properties of Selected Elements’, Handbook of Chemistry and Physics, 94th Edition, 2013-2014, pp. 12-126-12-150.
USPTO Office Action for U.S. Appl. No. 12/491,169 dated Oct. 22, 2010 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/491,169 dated May 11, 2011 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/491,176 dated Nov. 22, 2013 (14 pages).
USPTO Office Action for U.S. Appl. No. 12/497,289 dated Feb. 2, 2012 (6 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/497,289 dated May 22, 2012 (7 pages).
USPTO Office Action for U.S. Appl. No. 12/785,953 dated Apr. 12, 2012 (11 pages).
USPTO Office Action for U.S. Appl. No. 12/785,953 dated Jan. 11, 2013 (14 pages).
USPTO Office Action for U.S. Appl. No. 12/785,953 dated Oct. 3, 2013 (10 pages).
USPTO Office Action for U.S. Appl. No. 12/880,803 dated Feb. 22, 2012 (8 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/880,803 dated Jul. 18, 2012 (5 pages).
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Mar. 28, 2012 (17 pages).
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Jan. 29, 2013 (25 pages).
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Aug. 2, 2013 (15 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Dec. 2, 2013 (17 pages).
USPTO Office Action for U.S. Appl. No. 13/135,087 dated Sep. 27, 2013 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/210,769 dated Oct. 28, 2013 (9 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/281,221 dated Nov. 12, 2013 (10 pages).
USPTO Office Action for U.S. Appl. No. 13/328,978 dated Sep. 26, 2013 (25 pages).
USPTO Office Action for U.S. Appl. No. 13/357,315 dated Oct. 15, 2013 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/482,956 dated Oct. 28, 2013 (9 pages).
USPTO Office Action for U.S. Appl. No. 13/548,635 dated Jun. 14, 2013 (5 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/548,635 dated Sep. 16, 2013 (6 pages).
USPTO Office Action for U.S. Appl. No. 13/548,770 dated Mar. 12, 2013 (5 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/548,770 dated Jun. 25, 2013 (6 pages).
USPTO Office Action for U.S. Appl. No. 13/629,366 dated Oct. 31, 2013 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/723,968 dated Nov. 29, 2013 (23 pages).
Related Publications (1)
Number Date Country
20150014695 A1 Jan 2015 US