This invention relates to a disposable container having a vortex breaker at its outlet and a fluid diverter at its inlet and to a system utilizing the container.
Prior to the present invention, fluids have been processed in systems that utilize stainless steel containers. These containers are sterilized after use so that they can be reused. The sterilization procedures are expensive and cumbersome as well as being ineffectual at times.
In order to provide greater flexibility in manufacturing and reduce the time needed to effect valid regeneration manufacturers have begun to utilize disposable sterilized bags that are used with each product batch. An example of use of these disposable bags is in a system for processing protein solutions wherein the protein in solution is concentrated by tangential flow filtration (TFF). Another example of use is in a system for changing the pH of a protein solution by exchanging buffer solutions. Utilizing TFF and by replacing the buffer in a protein solution with a new buffer. In each of these processes, the retentate is recirculated from the TFF step to the disposable bag. At low fluid levels in a TFF recirculation bag, there is a concern with the manner in which fluid enters the bag from the retentate return line. Ideally the fluid will not splash as it returns to the bag. Splashing causes foaming which is undesirable in this application. Another concern is that the incoming fluid will not mix well with the fluid already in the tank. If the returning fluid is not diverted as it returns, there is a danger that it will flow directly to the bag outlet and by-pass mixing with the fluid already in the bag. This situation is known as “short-circuiting”, and is an impediment to proper mixing of the process fluid. Another problem associated with the returning fluid, is that it can create a fountain that will splash and cause foaming.
Another problem occurs at the bag outlet where the fluid is removed from the bag. When the fluid is removed, one or more conical shaped vortices are formed from a conical column of gas present in the bag. This is undesirable since the vortex will cause mixing of the fluid with gas which results in undesirable foaming.
According, it would be desirable to provide a disposable container for fluids having means for minimizing or preventing foaming at the container inlet and at the container outlet. In addition, it would be desirable to provide such a container wherein fluid entering the inlet is directed away from the outlet thereby to effect mixing of the incoming fluid with the fluid in the container.
A disposable container for a fluid having one or more inlets and an outlet is provided having a device for minimizing or preventing foaming of fluid at the outlet and at the one or more inlets. In addition, the container is provided with a flow diverter at the one or more inlets which direct fluid entering the container away from the outlet thereby to effect mixing of incoming fluid with fluid in the container.
A system is also provided that utilizes the container with a fluid treatment step such as a TFF unit whereby treated fluid is recycled to the container.
The one or more inlets are provided with a fluid diverter comprising a conduit having one or a plurality, usually two, open ends. The conduit is positioned adjacent each inlet and the open ends are positioned to direct fluid away from the outlet. The outlet is provided with a vortex breaker comprising a solid surface that initially directs fluid away from the outlet. Openings are provided adjacent the solid surface which permits fluid to enter the outlet. The initial direction of fluid away from the outlet minimizes or prevents the formation of one or more vortices at the outlet.
The disposable container of this invention is formed of monolayer or multilayer flexible walls formed of a polymeric composition such as polyethylene, including ultrahigh molecular weight polyethylene, linear low density polyethylene, low density or medium density polyethylene; polyproplylene; ethylene vinyl acetate (EVOH); polyvinyl chloride (PVC); polyvinyl acetate (PVA); ethylene vinyl acetate copolymers (EVA copolymers); blends of various thermoplastics; coextrusions of different thermoplastics; multilayered laminates of different thermoplastics; or the like. By “different” it is meant to include different polymer types such as polyetehylene layers with one or more layers of EVOH as well as the same polymer type but of different characteristics such as molecular weight linear or branched polymer of fillers and the like. Typically medical grade and preferably animal-free plastics are used. They generally are sterilizable such as by steam, ethylene oxide or radiation such as beta or gamma radiation. Most have good tensile strength, low gas transfer and are either transparent or at least translucent. The container is provided with one or more inlets, an outlet and an optional vent passage. As set forth above, each inlet is provided with a fluid diverter which is secured to the inside wall of the container such as by heat sealing or with an adhesive and positioned adjacent each inlet. Optionally, the fluid diverter can be molded into the inlet structure.
The outlet is provided with a vortex breaker positioned adjacent the outlet and secured to the inside surface of the container such as by heat sealing or with an adhesive. Optionally, the vortex breaker can be molded into the outlet structure.
In a preferred embodiment, the disposable container is positioned within a solid support container for ease of filling and emptying the container of fluid.
Referring to
Referring to
Referring to
Referring to
Referring to
Optionally, the diverter 40 may have one open end or more than two open ends depending on the design of the diverter. For example, in using a square or rectangular design, as shown, one can use two open ends 42, 44 as shown. Alternatively, one can elect to have just one open end 42 and seal the other normally open end 44.
Moreover, when one uses a triangular-shaped diverter 40 (
Using a polygonal shape of more than four sides, such as the hexagonal-shaped diverter 40 of
Additionally, one can use a circular-shaped diverter 40 (
While shown as having symmetrically arranged openings, they do not necessarily have to be so and can be tailored to provide one with the desired fluid flow.
Likewise one can use a solid diverter 100 that is either attached to the port 20 or formed as part of the port 20 as shown in
As shown in
As shown in
Referring to
As with the diverter, the vortex breaker may also be formed as part of the outlet 11.
This application claims the benefit of U.S. Provisional Patent Application No. 61/130,358, filed on May 30, 2008, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61130358 | May 2008 | US |