This invention relates to containers and closures for holding pressurised liquids. The invention is applicable to closures which incorporate valves, as used with carbonated beverage containers such as beer kegs, and which are configured to enable the liquid contents to be dispensed by gas pressure.
A great number of containers are used to house pressurized liquids, for example carbonated beverages. Such containers have a narrowed neck which is closed with a screw-on cap. Gaps are normally left between the threads to enable the cap to be easily screwed into the neck without being hindered by friction. The cap and the neck have opposed sealing surfaces which come into engagement when the cap is tightened to prevent leakage and maintain the internal pressure. In addition, when the cap is tightened, opposing surfaces of the respective screw threads on the neck and cap are also drawn together. If the thread forms are continuous, and the male and female components closely aligned with the same pitch, the internal pressure will be substantially maintained during cap removal. When such a cap is partially unscrewed, although the sealing surfaces are open, the threads can still maintain a seal due to the upward force exerted on the cap by the internal gas pressure which draws the threads into sealing engagement. During removal of the cap, gas may still be vented along the length of the threads due to the gaps between them, but since this path is often narrow and follows the helical path of the threads the venting channel is long and restrictive so that the rate of venting is very slow. This is undesirable as it means the cap could be forcibly ejected as it is finally unscrewed, resulting in a co-called missiling condition where the cap acts as a high velocity projectile. As the internal pressures can be typically 2 to 3 bar for carbonated beverages this can represent a dangerous situation.
The missiling problem is especially important in the case of beer kegs. Such kegs normally have a closure incorporating a twin valve arrangement which facilitates the simultaneous introduction of the dispense gas and extraction of the beverage. These valves also provide access for filling the keg with beverage and they normally open and close both paths upon connection and disconnection. In small carbonated beverage bottles the internal pressure is reduced as the beverage is consumed thus leaving the bottle without internal pressure when empty. But with kegs, additional gas is introduced to dispense the beverage during normal use, often at pressures in excess of 5 bar. Thus, when the keg is empty of beverage the full internal pressure can still remain. When the valve closure is removed (for example during recycling of the container) an extremely dangerous situation exists.
To address the missiling problem various methods have been employed. One common solution is to introduce circumferential gaps into the thread, as disclosed in U.S. Pat. Nos. 2,990,079, 4,007,848 and EP 0 009 854 A1. These channels create axial venting paths for the internal gas to escape during the unscrewing operation, so that venting occurring as soon as the sealing surfaces are opened but while the threads remain substantially engaged. However, although such venting channels can be effective in venting the internal gas during cap removal they can be problematic in the case of containers such as beer kegs which are subjected to higher internal pressures. The gaps in the thread can substantially reduce the physical strength of the neck as the thinner sections create weak areas. Since high pressure containers and valve closures are increasingly being moulded of yieldable polymers (plastics) the internal pressures can lead to gradual distortion of the components (so-called creep) and potential failure.
EP 0 060 218 A2 addresses the risk of a screw-cap jumping off when it is screwed on. Spacer cams are provided on the thread flanks to produce a venting channel between the flanks. In high pressure containers, such as beer kegs, spacer cams would tend to become flattened under sustained high pressure. The provision of projections on the threads would therefore risk an inadequate and uncertain level of venting as the closure is released. Furthermore, due to creep, distortion of the intervening thread portions could occur, thereby weakening the screwed connection.
When viewed from one aspect the present invention proposes a container having a container body (C) to hold pressurised liquid and a neck (N) with a closure (V) engaged on said neck;
In a preferred embodiment the venting channels (36) are provided in successive turns of the screw thread (23, 24) and are axially aligned.
In a preferred embodiment a plurality of venting channels (36) are provided in each turn of the screw thread (23, 24).
In a preferred embodiment the venting channels (36) occupy less than 30% of each complete circumferential turn of the screw thread (23, 24), most preferably less than 20%.
In a preferred embodiment the closure (V) has:
The following description and the accompanying drawings referred to therein are included by way of non-limiting example in order to illustrate how the invention may be put into practice. In the drawings:
For the purpose of example the valve closure shown in the drawings is of the kind known as an A-type valve. All components of the valve closure may be moulded of polymeric materials (plastics) so that the closure is fully recyclable. A preferred form of valve closure is described in EP 2 585 400 A1.
Referring firstly to
In
Although the screw threads 23 and 24 have substantially the same pitch and a complimentary profile as shown in
During removal of the closure V, shown in
In the present closure, as shown in
The venting channels 36 are provided in successive turns of the screw threads 23 and are axially aligned, as shown. Furthermore, a number of venting channels are provided in each turn of the screw thread, which may be arranged in groups, for example six channels on each side of the neck. These channels provide a short unobstructed transverse path across the mating surfaces of the two threads, 23 and 24, and as shown in
The venting channels 36 occupy less than 30% of each complete circumferential turn of the screw thread 23, and preferably less than 20%. The channels have minimal impact on the cross sectional form of the thread so that the strength afforded to the neck by the screw thread is not significantly reduced. Moreover, there is little or no tendency to distortion due to creep under sustained gas pressure.
The arrangement described therefore provides relatively rapid venting while substantially maintaining the physical strength of the neck.
It will be appreciated that similar venting channels could be formed in the mating distal faces 33 of the closure threads 24 instead of, or in addition to, the proximal faces of the neck threads 23, but it is generally easier to mould the venting channels into an external thread.
Although the venting arrangement can be applied to any closure for pressurised containers it is particularly useful in the case of valve closures which are subject to relatively high gas pressures over a sustained period such as the A-type closure described. The venting mechanism can be applied to all the common valve formats A, G, S, D and M types. An A-type valve is similar to a G-type valve. Both have a fixed central core pin and a single spring-loaded valve member which controls two ports. Other forms of valve closure are also used with beer kegs. Operationally, S, D and M types are similar to each other in that they all have no fixed central core pin but have two concentric spring-loaded moving valve members which separately control the two ports. Generally the valve members are operated by respective spring elements, but the valve members may be cascaded such that closure of one spring-loaded valve member causes closure of the other.
Whilst the above description places emphasis on the areas which are believed to be new and addresses specific problems which have been identified, it is intended that the features disclosed herein may be used in any combination which is capable of providing a new and useful advance in the art.
Number | Date | Country | Kind |
---|---|---|---|
1818333.5 | Nov 2018 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2019/053179 | 11/8/2019 | WO | 00 |