Containers and other types of packaging are known for the retention and exhibition of fluids or gels such as cleaning products, fabric care products, oral care products, etc. Such containers are typically formed with a primary packaging having a shape and size selected to minimize weight and/or outer profile so as to maximize the quantity of containers receivable in a shipping carton. However, this primary packaging sacrifices structural integrity for other factors such as weight, size and aesthetics.
Thus, in order to ship such containers, the containers are often provided with a secondary or tertiary packaging to protect the container during transport. In some cases, the primary packaging is loaded into a shipping carton (secondary packaging) and the shipping carton is provided with a means to prevent further damage to the container during transport (tertiary packaging). For example, a cushioning material (e.g., loose-fill Styrofoam packing material or “packing peanuts,” air-filled sacs, etc.) is inserted into the shipping carton to prevent free movement of the container during transport.
The packaging systems described above, however, are cumbersome and require the addition of additional packaging materials at various stages of transport—therefore increasing the manpower needed to transport goods to a consumer and creating extra steps to be completed by the shipper and any intermediary parties (e.g., third-party seller). Such increased manpower and steps often result in an increased overall cost of shipping the container. Further, in a situation where only a small quantity of containers is to be shipped, the containers are often loaded in a large shipping box, thereby using valuable space in a transport vehicle and reducing the quantity of items that can be shipped together.
The present invention may be directed, in one aspect, to a container apparatus. The container may be designed to hold and/or transfer one or more substances. The container is designed to withstand one or more forces exerted upon the container. For example, the container is designed to withstand a transverse or axial force exerted upon the container. The force may be exerted upon the container due to the container being dropped, via a stacking of the container, or the like. The container may be used during transport (e.g., e-commerce) and/or in a brick and mortar store.
In an aspect the container may include a container body. The container body may extend along a longitudinal axis, for example, from a bottom end of the container to a top end of the container. The container body may define an internal cavity for holding a substance, such as a fluidic substance, a solid (e.g., a powder and/or a tablet), a gas, etc. The container body may include one or more shoulders, such as a first and/or second shoulder (e.g., axial shoulder). The shoulders may be located at the top end of the container. The container may include a neck. The neck may be located (e.g., may nest) between the first and second axial shoulder. The neck may be configured to accept a closure device. The neck may have an inner surface, for example, that defines a passageway into the internal cavity. The container may include one or more impact absorbing regions, such as a first axial impact absorbing region. The first axial impact absorbing region may be configured to absorb an axial force applied to the first axial shoulder and/or the second axial shoulder.
In an aspect the container may include a container body. The container body may have a bottom end and a top end. The container body may define an internal cavity, for example, for holding a fluidic substance, a solid (e.g., a powder and/or a tablet), a gas, etc. The container body may include one or more shoulders. For example, the container body may include first and/or second axial shoulders at the top end. The first axial shoulder may include a first shoulder rib. The first shoulder rib may protrude from a top surface of the first axial shoulder. The second axial shoulder may include a second shoulder rib. The second shoulder rib may protrude from a top surface of the second axial shoulder. The first and second axial shoulders may be spaced apart from one another, for example, to form a valley therebetween. A neck may nest between the first and second axial shoulders, for example, in the valley. The neck may be configured to accept a closure device. The neck may have an inner surface that may define a passageway into the internal cavity.
In an aspect the container may include a container body. The container body may extend along a longitudinal axis, for example, from a bottom end to a top end. The container body may define an internal cavity for holding a fluidic substance, a solid (e.g., a powder and/or a tablet), a gas, etc. The container body may include a neck nesting below an outer surface of the container body. The neck may be coupled to a closure device. The neck may have an inner surface that defines a passageway into the internal cavity. The container may include one or more impact absorbing regions. For example, the container may include one or more axial impact absorbing regions configured to absorb an axial force applied to the container body, one or more transverse impact absorbing regions configured to absorb a transverse force applied to the container body, and/or one or more oblique impact absorbing regions configured to absorb an axial and/or transverse force applied to the container body.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top,” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
A proposed container for storing, transferring, etc., one or more substances is described herein. The container may store, transfer, etc., liquids and/or gels. For example, the container may store, transfer, etc., cleaning liquids. The liquids (e.g., cleaning liquids) may have a freezing temperature that is below 32 degrees Fahrenheit. In other examples the liquids may have a freezing temperature that is below other temperatures, such as below 20 degrees Fahrenheit, 10 degrees Fahrenheit, etc. The container may store, transfer, etc., solids and/or gases. For example, the container may store, transfer, etc., solids in a powder form, a tablet form, as well as one or more other forms.
The proposed container incorporates features that work together to provide protection (e.g., additional protection) of the liquids, gels, solids, and/or gases. The proposed container incorporates features that work together to provide improved package performance, for example, for when the container is subjected to severe conditions typical of over-the-road transport, distribution center processing/handling, etc. The features of the proposed container are intended to prevent and/or limit the damage to the container as well as the contents stored and/or transferred in the container. A consideration of the proposed container is to improve package performance for e-commerce distribution and shipping, although other uses of the container may be provided.
The proposed container may include one or more shoulders on one or more surfaces of the container. In addition, or as an alternative to the shoulders, the container may include one or more absorbing (e.g., shock absorbing, impact absorbing, etc.) regions. The shoulders and/or the absorbing regions may be used to prevent, limit, etc., damage, loss, or the like to the contents stored and/or transferred by the container. Further, the shoulders and/or the absorbing regions may be used to prevent, limit, etc., damage to one or more parts of the container itself. For example, the shoulders and/or the absorbing regions may be used to prevent, limit, etc., damage to a neck or body of the container.
An example container is shown on
The container body 102 may include one or more shoulders, such as shoulders 110a, 110b. As shown on
Shoulders 110a, 110b may include grooves, such as outward grooves 120a, 120b (
Shoulders 110a, 110b may be integrally formed with container 100, such as with container body 102. One or more of the shoulders 110a, 110b may be attached to the container body 102. Shoulders 110a, 110b may be made of the same material as one or more portions of the container 100. For example, shoulders 110a, 110b may be made of the same material as the container body 102. In other examples, shoulders 110a, 110b may be made of different materials of one or more portions of the container 100, such as container body 102.
As shown on
Neck 108 may extend from the container 100 (e.g., the container body 102). Neck 108 may extend away from the container 100 in a linear fashion, as shown in
Neck 108 may be located adjacent to one or more of the shoulders 110a, 110b. For example, neck 108 may be located (e.g., may nest) between first shoulder 110a and second shoulder 110b of container 100. Neck 108 may be located between shoulders 110a, 110b to protect the vulnerabilities of neck 108 from a direct force. For example, due to the form factor of neck 108, neck 108 may be unable to take on a direct force (such as axial force AF, shown on
Shoulders 110a, 110b may provide protection to the neck 108 against one or more forces exerted upon container 100. For example, neck 108 is less likely to receive a direct impact as a result of dropping container 100 and/or stacking container 100 when neck 108 is located (e.g., nested) between shoulders 110a, 110b. Container 100 is configured such that shoulders 110a, 110b receive all, some, or most of the impact of the force. Having container 100 receive all, some, or most of the impact of the force may preserve the integrity of neck 108 during such impact.
A closure device 116 (e.g., a cap, such as a twist or a flip-top cap) may be coupled to the container 100. For example, neck 108 may couple to closure device 116. The closure device 116 may be used to contain one or more substances (e.g., fluidic substances, solid substances, etc.) stored and/or transferred in container 100. The closure device 116 may be used to release one or more substances (e.g., fluidic substances, solid substances, etc.) from the container 108, for example, via neck 108.
The container body 102 may include one or more segments (e.g., axial segments). As shown on
Container 100 may include one or more impact absorbing regions, such as one or more axial impact absorbing regions. The impact absorbing regions may be configured to absorb an impact to the container 100 upon one or more sides/surfaces of the container 100. For example, the impact absorbing regions may be axial impact absorbing regions configured to absorb axial forces exerted upon the container 100. The axial impact absorbing regions may be found on one or more walls of the container, such as the front wall 130, rear wall 132, sides walls 134a, 134b, etc. of the container 100. One or more impact absorbing regions may extend around a portion of one or more walls of the container 100. Also, or alternatively, one or more impact absorbing regions may extend around an entire perimeter of one or more walls of the container.
First impact absorbing region 114 and/or second impact absorbing region 170 may be an axial impact absorbing region. First axial impact absorbing region 114 and/or second axial impact absorbing region 170 may be configured to absorb an axial force applied to the top end 106 and/or bottom end 107 of container 100. First axial impact absorbing region 114 and/or second axial impact absorbing region 170 may be configured to absorb an axial force applied to the first shoulder 110a and/or the second shoulder 110b. Container 100 is not limited to first impact absorbing region 114 and/or second impact absorbing region 170 and may have additional (or fewer) impact absorbing regions in examples.
First impact absorbing region 114 may be located between the first axial segment 160 and the second axial segment 162. First impact absorbing region 114 may couple the first axial segment 160 and the second axial segment 162. Second impact absorbing region 170 may be located between the second axial segment 162 and the third axial segment 164. Second impact absorbing region 170 may couple the second axial segment 162 and the third axial segment 164.
The impact absorbing regions (e.g., axial impact absorbing regions) may include one or more designs used for absorbing an impact. For example, the axial impact absorbing regions, such as first impact absorbing region 114 and/or second impact absorbing region 170, may include a material that is weaker than the material found on the shoulders 110a, 110b or other portions of the container 100. The first impact absorbing region 114 and/or second impact absorbing region 170 may include one or more grooves, bellows, fins, ribs, etc., that may be used to absorb an impact to the container 100. For example, first impact absorbing region 114 may include one or more transverse grooves, such as transverse groove 191. The one or more grooves, such as transverse first groove 191, may circumscribe the container body 102. The one or more transverse first grooves 191 may be oriented perpendicular (e.g., substantially perpendicular) to the longitudinal axis. The grooves (e.g., transverse groove 191), bellows, fins, ribs, etc., may be compressible, foldable, etc. For example, the grooves, bellows, fins, ribs, etc., may be compressible, foldable along weaker material. The impact absorbing regions (e.g., axial impact absorbing regions), such as first impact absorbing region 114 and/or second impact absorbing region 170, may include one or more grooves, bellows, ribs, fins, etc. that may be used to absorb an impact, such as an axial impact, to the shoulders 110a, 110b, front wall 130, rear wall 132, side walls, bottom end 104, etc., of the container 100.
A second impact absorbing region 170 may be located between the second axial segment 162 and the third axial segment 164. Second impact absorbing region 170 may couple the second axial segment 162 and the third axial segment 164 to one another. Second impact absorbing region 170 may be an axial impact absorbing region. For example, the second impact absorbing region 170 may be configured to absorb an axial force applied to the third axial segment 164, for example. In other examples, second impact absorbing region 170 may be configured to absorb an impact (e.g., an axial impact) to the container 100 upon one or more other sides/surfaces of the container 100, including the top end 106, bottom end 104, side ends, etc., of the container 100.
As described herein, the impact absorbing regions may include one or more grooves. The grooves may be inward grooves, outward grooves, and/or a combination of inward grooves and outward grooves. The grooves may be configured to absorb a force, such as an impact force that is exerted upon the container 100. The force may be an axial force exerted upon the container 100, a transverse force exerted upon the container 100, etc. Using second impact absorbing region 170 as an example, second impact absorbing region 170 may include one or more grooves. As shown on
First axial segment 160 may include one or more portions. For example, first axial segment 160 may include a main body 194. In an example, one or more shoulders (e.g., the first axial shoulder 110a and/or the second axial shoulder 110b) may extend upward from the main body 194 of the first axial segment 160. Neck 108 may extend upward from the main body 194. In other examples, shoulders 110a, 110b and/or neck 108 may be formed of the main body 194 of the first axial segment 160. Neck 108 may be flush with the main body 194, or the neck 108 may extend within the main body 194 of the first axial segment 160.
One or more ribs and/or grooves (e.g., inward ribs, outward ribs, or a combination of inward and outward ribs) may be located on one or more segments of the container 102. For example, one or more ribs may be located on the first axial segment 160 of the container, such as on one or more shoulders 110a, 110b and/or neck 108 of the container 100. The one or more ribs located on the shoulders 110a, 110b and/or neck 108 may include a neck rib, a shoulder rib, and/or a combination of neck ribs and shoulder ribs. For example, as shown on
The first neck rib 163a may protrude from a top surface of the main body 194 of the first axial section 160. The first neck rib 163a may be connected to an outer surface of the neck 108 and/or may be connected to the outer surface of a side of neck 108. The second neck rib 163b may protrude from the top surface of the main body 194 of the first axial section 160 and/or may be connected to the outer surface of a side (e.g., another side) of neck 108. The first neck rib 163a and the second neck rib 163b may be located on the same side of neck 108. In other examples, first neck rib 163a and second neck rib 163b may be located on opposite sides of the neck 108. Although
One or more gaps may exist between neck 108 and one or more of the shoulders 110a, 110b. The gaps may be through gaps. As an example, a first gap 122a may exist between the neck 108 and the first axial shoulder 110a. A second gap 122b may exist between the neck 108 and the second axial shoulder 110b. The gaps may have similar configurations as one another, such as having similar lengths, widths, and shapes as one another. However, in other examples the gaps 122a, 122b may have different configurations, such as having different lengths, widths, and shapes as one another.
One or more of the shoulders may terminate in a distal-most surface. For example, the first axial shoulder 110a and/or the second axial shoulder 110b may terminate in a distal-most surface. The distal-most surface may be in reference to the main body 194. The distal-most surface of the first axial shoulder 110a may be the same as the second axial shoulder 110b, or the distal-most surface of the first axial shoulder 110a may be different (e.g., lower or higher) than the second axial shoulder 110b.
One or more shoulder ribs may be located on one or more of the shoulders, such as shoulders 110a, 110b. The shoulder ribs may extend beyond the distal-most surface of the shoulders. For example, where the shoulder rib protrudes from a top surface of the shoulder, the first shoulder rib 120a may provide the distal-most surface of the first axial shoulder 110a.
First axial shoulder 110a may include a first shoulder rib 120a that protrudes from a surface (e.g., a top surface) of the first axial shoulder 110a. In such example, first shoulder rib 120a may extend beyond the distal-most surface of first axial shoulder 110a. In other examples, first axial shoulder 110a may include a shoulder rib that extends inward from a surface (e.g., top surface) of the first axial shoulder 110a. In these examples, first axial shoulder 110a may extend beyond the distal-most surface of first shoulder rib 120a. As shown in
Container 100 may include one or more shoulders and/or one or more shoulder ribs. For example, container 100 may include a second axial shoulder 110b. Second axial shoulder 110b may include a second shoulder rib 120b that protrudes from a surface (e.g., a top surface) of the second axial shoulder. In other examples, second axial shoulder 110b may include a shoulder rib that may extend inward from a surface (e.g., a top surface) of the second axial shoulder 110b. In examples where the shoulder rib protrudes from a top surface of the shoulder, the second shoulder rib 120b may include the distal-most surface of the second axial shoulder 110b.
Neck 108 may terminate in a distal-most surface. The distal-most surface of neck 108 may be in reference to the main body 194. As shown in
Neck 108 may terminate in a distal-most surface that is located at the reference plane RR extending between and/or including the distal-most surfaces of the first axial shoulder 110a and second axial shoulder 110b. Neck 108 may terminate in a distal-most surface that is below reference plane RR. In other examples, the neck 108 may terminate in a distal-most surface that is above (e.g., slightly above) the reference plane RR. For example, the neck 108 may terminate in a distal-most surface that is one millimeter to five millimeters (preferably one to three millimeters) above the reference plane RR. The reference plane RR may extend perpendicular (e.g., substantially perpendicular) to the longitudinal axis.
As described herein, neck 108 may be configured to couple to a closure device, such as closure device 116 (
The distal most surface of closure device 116 may be located at or below the reference plane RR, as described herein. For example, distal most surface of closure device 116 may be located at or below the reference plane RR that extends between and/or includes the distal-most surfaces of the first axial shoulder 110a and/or second axial shoulder 110b. The distal most surface of the closure device 116 may extend to (e.g., substantially to) a distal-most surface that is above (e.g., slightly above) the reference plane RR. For example, the closure device 116 may terminate in a distal-most surface that is one millimeter to five millimeters (preferably one to three millimeters) above the reference plane RR.
The container 100 (including one or more portions of the container 100, such as container body 102) may be formed of one or more structures. Container 100 may be an integrally-formed monolithic structure. Container 100 may be formed via known techniques such as blow-molding, injection molding, or one or more other techniques used to make containers. For example, container 100 may be formed via extrusion blow molding. Container 100 (e.g., the container body 102) may be formed of one or more of polyolefins (polypropylenes, low, medium and high density polyethylenes). Container 100 may be formed of one or more of polyethylene terephthalate (“PET”) (e.g., made via injection stretch blow molding) and/or elastomeric materials. Container 100 may be formed via one or more combinations of the above. In other examples, container 100 may be formed of one or more other materials.
The container body 102 may include one or more walls. For example, as shown on
One or more of the depressions 145a, 145b may be delimited by a structure of the container 100. For example, the depressions 145a, 145b may be delimited by one or more shoulder regions, such as an upper transverse shoulder and/or a lower transverse shoulder. Depression 145a may be delimited by an upper transverse shoulder 144a and/or a lower transverse shoulder 146a. Depression 145b may be delimited by an upper transverse shoulder 144b and/or a lower transverse shoulder 146b. The container 100 may be include one or more depressions to assist in absorbing one or more impacts (e.g., axial impacts) upon the container 100. For example, depressions 145a, 145b may be configured to absorb an impact upon the top end 106 and/or bottom end 104 of container 100. Depressions of the container may be of many and varied form factors, sizes, and/or number. Depressions (e.g., depressions 145a, 145b) may include one or more flanges. The flanges of the depressions may have a distal-most surface that extends to a shoulder portion (e.g., an upper and/or lower transverse shoulder). The flanges may extend from one or more edges of a side wall. The flanges may extend from a middle portion of the side wall.
Container 100 may have a floor, such as floor 127 (shown on
One or more segments of the container body 102 may include one or more narrowed sections. For example, as shown on
The narrowed sections may have one or more thicknesses. For example, a first thickness may be measured from a front surface of the narrowed section to a rear surface of the narrowed section. The first thickness (e.g., measured from a front surface of the narrowed section to a rear surface of the narrowed section) may be less than the second thickness (e.g., measured from an outer surface of the front wall to a rear surface of the rear wall). For example, as shown on
The container body 102 may be formed in one or more shapes. The container body 102 may have a three-dimensional shape. For example, the container body 102 may have a three-dimensional rectangular, square, oval, circular, cylindrical, etc., shape. The container 102 may have one or more corners. For example, the container 102 may have four corners. The corners may be rounded corners, linear corners, pointed corners, bumpy corners, and the like.
The container body 102 may include one or more transverse impact absorbing regions. The transverse impact absorbing regions may be configured to absorb a transverse impact upon the container 100. As shown on
The impact absorbing regions may include one or more grooves (e.g., transverse grooves), for example, for absorbing transverse impacts upon the container body 102. For example, the first transverse impact absorbing region 117 may include a first transverse groove 115. The first transverse groove 115 may extend (e.g., extend substantially) parallel to the longitudinal axis of the container body 102. A second transverse groove 119 may extend (e.g., extend substantially) parallel to the longitudinal axis of the container body 102. The first transverse groove 115 and the second transverse groove 119 may be located on a front wall 130 of the container body 102. The first transverse groove 115 and/or the second transverse groove 119 may be located on opposite sides of the longitudinal axis.
Container body 102 may include a second transverse impact absorbing region 183.
Second transverse impact absorbing region 183, as shown on
Container body 102 may include one or more oblique impact absorbing regions. Oblique impact absorbing regions may be configured to absorb axial and/or transverse forces applied to the container 102. For example, the container body 102 may include a first oblique impact absorbing region 123 (on front wall 130) and/or a second oblique impact absorbing region 113 (on rear wall 132). The first oblique impact absorbing region 123 and/or the second oblique impact absorbing region 113 may be configured to absorb axial and/or transverse forces exerted upon the container body 102. The first oblique impact absorbing region 123 and/or the second oblique impact absorbing region 113 may have one or more grooves or sets of grooves, for example, to absorb axial and/or transverse forced exerted upon the container 100.
The sets of grooves of the oblique impact absorbing regions may include one or more pairs of grooves (e.g., inclined grooves), ribs, fins, etc., such as one or more pairs of inclined grooves 125a, 125b (shown in
Container 100 may include a third pair of inclined grooves 129a and/or a fourth pair of inclined grooves 129b. The third pair of inclined grooves 129a and/or the fourth pair of inclined grooves 129b may extend substantially parallel to one another. In an example, the third and/or fourth pairs of inclined grooves 129a, 129b may be located on the rear wall 132 of the container body 102. In other examples, however, the third and/or fourth pairs of inclined grooves may be located on any wall of the container body 102, including the front wall 130 of the container body 102. Additional (or less) grooves may be located on the front wall 130 of the container body 102 and/or the rear wall 132 of the container body 102. Although the grooves are defined herein as being in pairs, the disclosure should not be so limiting. The grooves may include a single groove, a pair of grooves, or more.
As provided herein, container 100 may be formed in one or more shapes and/or in one or more configurations. For example, container 100 may be rectangular in dimension. Container 100 may include one or more corners and/or shoulders, for example, to minimize damage when impacted. The corners and/or shoulders of container 100 may be rounded. The shape of the container 100 may facilitate efficient case packing and/or may be robust enough to minimize or eliminate secondary packaging.
The container described herein may be formed of one or more extruded resins, polyolefins (e.g., polypropylenes), polyethylene terephthalates (“PETs”), elastomeric materials, as well as any combination of polyolefins (e.g., polypropylenes), polyethylene terephthalates (“PETs”), and elastomeric materials. Container 100 may be formed of one or more other materials, however, as the materials provided above are examples and for illustration purposes only. The container may be formed by one or more materials (or combinations of materials) and/or one or more methods known to form containers. For example, the container may be formed via extrusion blow molding, injection stretch blow molding, and the like.
As described herein, the container 100 may have a neck, such as neck 108, which may be round. In other examples, neck 108 may take other form factors, such as being linear, square, rectangular, etc. Neck 108 may be elongated or neck 108 may be short. In some examples, neck 108 may be recessed, for example, into the top end 106 of the container 100. The neck 108 may include a retention ring, for example, to accept closure device 116 (e.g., a dispensing cap). Closure device 116 cap may snap on to the neck 108 and/or the closure device 116 may be retained by one or more retention rings of the neck 108, which may be segmented.
In some examples, the top surface of the closure device 116 may be even with (e.g., substantially even with) the top surface of the first 110a and/or second 110b shoulders of container 100. The top surface of the closure device 116 may be below the top surface of the first 110a and/or second 110b shoulders of container 100. The top surface of the closure device 116 may be above (e.g., slightly above) the top surface of the first 110a and/or second 110b shoulders of container 100. The structure of the container 100 may create protection for the neck 108 and/or the closure device 116, which may be more vulnerable than the shoulders 110a, 110b when the container 100 is subjected to dropping or stacking.
One or more grooves may be placed on, or within, container 100. For example, one or more vertical, diagonal, curved, or/and horizontal grooves may be placed on one or more panels (e.g., front and/or back panels) of container 100. The grooves may be symmetrical (or not symmetrical). The grooves may be designed to absorb and dissipate energy applied to container 100, for example, when container 100 is dropped, stacked upon, or otherwise subjected to shock. The grooves of the container 100 may be extruded or molded from a base surface. The grooves may be configured to absorb and dissipate energy generated by shock. For example, the grooves may be configured in form factors (e.g., thin, thick, parallel, etc.) in a manner that will absorb and dissipate energy generated by shock. The grooves may provide protection for the harsh sorting and shipping logistics of e-Commerce, for example.
Container 100 may be designed to hold and/or transfer different amounts of fluidic, solid, or other substances. As an example, container 100 may be designed to store and/or transfer one liter of the fluidic substance, 200 grams of a powder, 100 tablets, etc. In an example when the container is designed to store and/or transfer one liter of fluidic substances (and/or when the fluidic substance has a weight above sixty-five grams), the container 100 may be able to withstand a vertical top load of 335 N (e.g., a minimum of 335 N) and/or a displacement of 17 mm (e.g., a maximum 17 mm) when force is applied.
The container 100 may have a panel area indicated in the container body 102. An example panel area 199 is shown on
The panel area may include one or more impact absorbing segments and/or regions. For example, panel area 199 may include one or more grooves, bellows, ribs, fins, etc. Although
As described herein, when the container 100 is dropped directly from its top section (or when something is dropped upon the top section of container 100), the maximum stress may be observed on one or more of the grooves provided near the neck 108 and/or at the top of the shoulders 110a, 110b during impact. The container 100 may dissipate the energy causing little to no damage to the container 100 and/or to the substance stored within the container 100.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.