Container bulk material delivery system

Information

  • Patent Grant
  • 11192731
  • Patent Number
    11,192,731
  • Date Filed
    Thursday, May 7, 2015
    9 years ago
  • Date Issued
    Tuesday, December 7, 2021
    3 years ago
Abstract
In accordance with presently disclosed embodiments, systems and methods for using one or more pre-filled, portable containers, instead of pneumatic transfer, to move bulk material from a transportation unit to a blender receptacle of a blender are provided. A transportation unit may deliver one or more containers of bulk material to the well site, where the containers may be disposed in an elevated position around the blender receptacle. A gravity feed outlet may extend from one or more containers to route bulk material from the one or more containers directly into the blender receptacle. Since the transportation unit is able to unload the portable containers of bulk material without pneumatic transfer, the stackable containers may enable a cleaner and more efficient bulk material transfer at the site.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a U.S. National Stage Application of International Application No. PCT/US2015/029750 filed May 7, 2015, which is incorporated herein by reference in its entirety for all purposes.


TECHNICAL FIELD

The present disclosure relates generally to transferring solid or liquid bulk materials for well operations, and more particularly, to a stackable container delivery system for providing bulk materials into a blender.


BACKGROUND

During the drilling and completion of oil and gas wells, various wellbore treating fluids are used for a number of purposes. For example, high viscosity gels are used to create fractures in oil and gas bearing formations to increase production. High viscosity and high density gels are also used to maintain positive hydrostatic pressure in the well while limiting flow of well fluids into earth formations during installation of completion equipment. High viscosity fluids are used to flow sand into wells during gravel packing operations. The high viscosity fluids are normally produced by mixing dry powder and/or granular materials and agents with water at the well site as they are needed for the particular treatment. Systems for metering and mixing the various materials are normally portable, e.g., skid- or truck-mounted, since they are needed for only short periods of time at a well site.


The powder or granular treating material is normally transported to a well site in a commercial or common carrier tank truck. Once the tank truck and mixing system are at the well site, the dry powder material (bulk material) must be transferred or conveyed from the tank truck into a supply tank for metering into a blender as needed. The bulk material is usually transferred from the tank truck pneumatically. More specifically, the bulk material is blown pneumatically from the tank truck into an on-location storage/delivery system (e.g., silo). The storage/delivery system may then deliver the bulk material onto a conveyor or into a hopper, which meters the bulk material through a chute into a blender tub.


The pneumatic conveying process used to deliver bulk material from the tank truck can be a time-consuming process. In addition, some well locations are arranged without a large amount of space to accommodate tank trucks, such that only a limited number of available tank trucks can be positioned to pneumatically fill the storage/delivery system at a given time. Accordingly, the pneumatic conveying process can lead to dead time of equipment usage and relatively high detention costs or demurrage costs associated with the tank trucks, hoses, and related equipment that are on-location during this time.


Furthermore, during the pneumatic conveying process, the bulk material is moved from the tank truck to the storage/delivery system in a turbulent manner, leading to large amounts of dust and noise generation. The air used for conveying the material must be vented from the storage tank and typically carries an undesirable amount of dust with it. Attempts to control dust during the conveying process typically involve the rig up and use of auxiliary equipment, such as a dust collector and duct work, adding cost to the material handling operations. In addition, traditional material handling systems can have several transfer points between the outlets of multiple storage/delivery systems and a blender. These transfer points often have to be shrouded and ventilated to prevent an undesirable release of dust into the environment. Further, after the dust has been captured using the dust collectors and ventilation systems, additional steps are needed to dispose of the dust.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of a bulk material handling system suitable for mixing bulk additive materials with liquids to form well treating fluids at a well site, in accordance with an embodiment of the present disclosure;



FIG. 2 is a schematic view of containers disposed around a blender receptacle (e.g., blender tub or hopper) for dispensing bulk material into the blender receptacle, in accordance with an embodiment of the present disclosure;



FIG. 3 is a perspective view of containers disposed around a blender receptacle (e.g., blender tub or hopper) for dispensing bulk material through a holding tank into the blender receptacle, in accordance with an embodiment of the present disclosure;



FIG. 4 is a schematic view of containers disposed around a blender receptacle (e.g., blender tub or hopper) for dispensing bulk material into the blender receptacle, in accordance with an embodiment of the present disclosure;



FIG. 5 is a schematic view of containers disposed around a blender receptacle (e.g., blender tub or hopper) for dispensing bulk material into the blender receptacle, in accordance with an embodiment of the present disclosure;



FIG. 6 is a schematic top view of the containers around the blender receptacle of FIG. 4, in accordance with an embodiment of the present disclosure;



FIG. 7 is a schematic top view of containers holding bulk material arranged linearly along one side of a blender receptacle, in accordance with an embodiment of the present disclosure;



FIGS. 8A and 8B are perspective views of containers that may be arranged in stacks around the blender receptacle of FIGS. 2-7, in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.


Certain embodiments according to the present disclosure may be directed to systems and methods for managing bulk material (e.g., bulk solid or liquid material used on location) efficiently at a well site. More specifically, the disclosed embodiments are directed to systems and methods for efficiently moving bulk material into a blender receptacle associated with a blender on location, which could be into a blender hopper or directly into a mixing tub of the blender. The present disclosure may include a system that utilizes one or more containers (e.g., pre-filled containers or filled on location) holding bulk material and arranged around the blender receptacle to transfer bulk material from the containers directly into the blender receptacle. The disclosed techniques may be used to efficiently handle any desirable bulk material having a solid or liquid constituency including, but not limited to, sand, proppant, gel particulate, dry-gel particulate, liquid additives and others.


In currently existing on-site bulk material handling applications, dry material (e.g., sand, proppant, gel particulate, or dry-gel particulate) may be used during the formation of treatment fluids. In such applications, the bulk material is transferred between transportation units, storage tanks, blenders, and other on-site components. The bulk material is often transferred pneumatically using pressurized air flows to provide the bulk material, for example, from a transportation unit (e.g., tank truck) to a storage/delivery system (e.g., silo). The bulk material may later be moved from the storage/delivery system to a hopper on a blender truck. A sand screw, chute, or other metering mechanism disposed in the hopper then meters the bulk material into a mixing tub of the blender, where the bulk material is mixed with other materials (e.g., water, fluids, chemicals, etc.). In some instances, the bulk material can be transferred pneumatically from a transportation unit into a storage tank on the blender truck.


Pneumatic transfer methods are generally selected due to the simplicity of the process. However, certain inherent inefficiencies are associated with the above-described pneumatic transfer of bulk material at a well site. First, blowing the bulk material pneumatically from a transportation unit to a storage/delivery system is a time consuming process, taking at least an hour to empty a single truck. Although the pneumatic process of blowing bulk material into a storage container can be accomplished prior to using the bulk material in blender operations, the long amount of time spent pneumatically transferring the bulk material to the storage/delivery system can lead to high equipment/detention costs. Detention costs are associated with the transportation equipment (e.g., tank trucks) being positioned on location for a period of time. In some instances, the equipment on location may be arranged so that accessibility to storage/delivery systems is limited for transportation units being used to pneumatically fill the storage/delivery systems. As a result, a large amount of time can be wasted by trucks waiting to move into position as other trucks are unloading bulk material, or trucks waiting for the material already in a storage bin to be used to make room for the next load of material.


In addition, the pneumatic transfer of bulk material tends to require a large amount of air to move the material through the system. As this volume of air vents to the atmosphere, fine dust particles are entrained and released. It is undesirable for this dust to be released into the atmosphere. Accordingly, existing systems employ dust control techniques that often utilize large pieces of additional equipment, separate power supplies, and complicated setups. In addition, the pneumatic transfer process, as well as the systems used to control dust, can lead to an undesirable level of noise produced during bulk material transfer.


The bulk material container systems disclosed herein are designed to address and eliminate these shortcomings. The presently disclosed techniques use a plurality of pre-filled, portable containers, instead of a pneumatic transfer process, to move the bulk material from a transportation unit to the blender receptacle (e.g., blender hopper or mixer). The transportation unit may deliver one or more containers of bulk material to the well site, where the containers may then be arranged on a platform (e.g., stand, rack structure) around the blender receptacle. The one or more containers may include gravity feed outlets extending therefrom, and these outlets may be used to route bulk material from the containers directly into the blender receptacle.


In some embodiments, the containers may be stacked one over another. The stacked containers may be connected such that bulk material may be dispensed directly from one upper container into the next lower container (e.g., via a chute, hatch, opening, etc.), and so forth. A gravity feed outlet may extend from the bottom container in each container stack, to route bulk material from the one or more containers in the stack directly into the blender receptacle. In other embodiments, individual gravity feed outlets may extend from each of the containers in the stack to route bulk material selectively from each of the containers in the stack directly into the blender receptacle. Since the transportation unit is able to unload the stackable containers of bulk material without pneumatic transfer, the stackable containers may be used to more efficiently transfer bulk material to the blender.


The stackable container systems and methods described herein may reduce detention costs associated with bulk material handling at the location, since the efficient filling process may enable a quicker offloading of each tank truck, as compared to those that rely on pneumatic transfer. In addition, by eliminating the pneumatic conveyance process entirely, the stackable container system may reduce the amount of dust generated at the location, as well as the noise levels associated with the bulk material transfer. The reduced dust generation may allow a reduction in the size of various dust control equipment used to ventilate the material handling system, leading to a reduction in overall cost, footprint, and rig-up time of the dust control equipment.


Turning now to the drawings, FIG. 1 is a block diagram of a bulk material handling system 10. The system 10 includes a container stack 12 featuring one or more elevated containers for holding a quantity of bulk material (e.g., solid or liquid treating material). The container stack 12 may utilize a gravity feed to provide a controlled, i.e. metered, flow of bulk material at an outlet 14. The outlet 14 may be a gravity feed outlet that conveys the bulk material from the container stack 12 to a blender 16. As illustrated, the blender 16 may include a hopper 18 and a mixer 20 (e.g., mixing compartment). The blender 16 may also include a metering mechanism 22 for providing a controlled, i.e. metered, flow of bulk material from the hopper 18 to the mixer 20. However, in other embodiments the blender 16 may not include the hopper 18, such that the outlet 14 from the container stack 12 may provide bulk material directly into the mixer 20.


Water and other additives may be supplied to the mixer 20 (e.g., mixing compartment) through an inlet 24. The bulk material and water may be mixed in the mixer 20 to produce (at an outlet 26) a fracing fluid, gel, cement slurry, drilling mud, or any other fluid mixture for use on location. The outlet 26 may be coupled to a pump for conveying the treating fluid into a well (e.g., a hydrocarbon recovery well) for a treating process. It should be noted that the disclosed container stack 12 may be utilized to provide bulk material for use in a variety of treating processes. For example, the disclosed systems and methods may be utilized to provide proppant materials into fracture treatments performed on a hydrocarbon recovery well. In other embodiments, the disclosed techniques may be used to provide other materials (e.g., non-proppant) for diversions, conductor-frac applications, cement mixing, drilling mud mixing, and other fluid mixing applications.


The container stack 12 may include one container 28 holding bulk material, this container 28 being elevated (e.g., on a platform 29) above a receiving portion of the blender 16 and stackable with at least another container. Although only one container stack 12 is illustrated, other embodiments may include several container stacks 12 (having at least one container 28) disposed near the blender 16. In the illustrated embodiment where the stack 12 features just one container 28, the container 28 may be replaceable such that once the bulk material from the container stack 12 runs low, a new container 28 may be placed on the platform 29 to maintain a steady flow of bulk material to the blender 16. In other embodiments, the container 28 may be integral with the platform 29 so that, when the bulk material from the container stack 12 runs low, a new container 28 featuring an integral platform 29 may be used to replace the empty container 28/platform 29.


A portable bulk storage system 30 may be provided at the well site for storing one or more additional containers 28 of bulk material to be used in the container stack 12. The bulk material containers 28 may be transported to the well site on a transportation unit (e.g., truck). The bulk storage system 30 may be the transportation unit itself or may be a skid, a pallet, or some other holding area. Before a treatment begins, one or more containers 28 of bulk material may be transferred from the storage system 30 to the container stack 12, as indicated by the arrow 32. This transfer may be performed by lifting the container 28 via a hoisting mechanism, such as a forklift or a crane.


After one or more of the containers 28 in the container stack 12 are emptied, the empty upper container(s) 28 may be removed via a hoisting mechanism. In some embodiments, the one or more empty containers 28 may be positioned on another bulk storage system 30 (e.g., a transportation unit, a skid, a pallet, or some other holding area) until they can be removed from the well site and/or refilled. In other embodiments, the one or more empty containers 28 may be positioned directly onto a transportation unit for transporting the empty containers 28 away from the well site. It should be noted that the same transportation unit used to provide one or more filled containers 28 to the well site may then be utilized to remove one or more empty containers from the well site.



FIG. 2 provides a more detailed view of an embodiment of the containers 28 holding bulk material and disposed in stacks 12 around a blender receptacle 50 (e.g., hopper or mixer) associated with a blender. As illustrated, several container stacks 12 (each including one container 28) may be disposed around the blender receptacle 50 and used to deliver bulk material into the blender receptacle 50. The container stacks 12 may be elevated so that all the containers 28 in the stacks 12 are disposed above the blender receptacle 50. Again, this may be accomplished by placing the containers 28 on a specially designed platform 29. As illustrated, each container stack 12 may include a gravity feed outlet 52 extending from the container 28 of the stack 12, to dispense bulk material from the container stack 12 directly into the blender receptacle 50. The gravity feed outlets 52 may be chutes, as shown, or may be any other desirable type of mechanical outlet that facilitates a flow of bulk material from the above container 28 directly into the blender receptacle 50 under a force due to gravity.


The term “blender receptacle” used herein may refer to any number of tubs, hoppers, mixers, and other areas where bulk material is needed. As mentioned above, the blender receptacle 50 may be associated with a blender disposed at the well site. For example, the blender receptacle 50 may be a blender hopper (e.g., hopper 18 of FIG. 1) used to provide bulk material to a metering system that meters the bulk material into a mixer. In other embodiments, the blender receptacle 50 may be a mixing tub (e.g., mixer 20 of FIG. 1) of a blender. In such instances, the blender receptacle 50 (mixer) may be configured such that it is sitting directly on the ground, instead of in an elevated position within the blender. This may enable the container stacks 12 to dump bulk material directly into the mixer, without the containers 28 being elevated exceedingly high. In still other embodiments, the blender receptacle 50 may be a mixer feeder (e.g., conveyor, sand screw, or the metering mechanism 22 of FIG. 1). Other embodiments of the system 10 may utilize other types of blender receptacle 50 for receiving the bulk material from the disclosed container stacks 12.


As illustrated, each of the container stacks 12 may include just a single container 28. Single container stacks 12 may be utilized when a relatively small amount of bulk material is needed for a particular well treatment. In addition, single container stacks 12 may be utilized when height restrictions prevent a hoisting mechanism (e.g., forklift) from positioning additional containers 28 onto the stacks 12. When single container stacks 12 such as these are used, additional stacks 12 may be positioned around the receiving bin 50 to provide a desired quantity of bulk material to the receiving bin 50.


As mentioned above, in some embodiments the gravity feed outlets 52 for the containers 28 may be chutes for routing bulk material directly from a lower end of the container 28 to the top of the blender receptacle 50. However, other types of the gravity feed outlets 52 may be used in other embodiments. For example, FIG. 3 illustrates three containers 28 disposed on platforms 29 in an elevated position around the blender receptacle 50. In some embodiments, the containers 28 may each be coupled to and integrally formed with the respective platforms 29. The containers 28 are disposed over a holding tank 60, or hopper, used to route bulk material directly from the containers 28 into the blender receptacle 50. The holding tank 60 may include a gate at the outlet of the holding tank 60, allowing the holding tank to be emptied into the blender receptacle 50 as desired.


In some embodiments, the holding tank 60 may be sectioned off so that each section of the holding tank 60 functions as a gravity feed outlet 52 for bulk material flowing from a respective container 28 disposed above the particular section. In other embodiments, the holding tank 60 may itself function as a single gravity feed outlet for all of the containers 28 disposed above the holding tank 60.


Another embodiment of the container stacks 12 that may be used to provide bulk material directly into the receiving bin 50 is illustrated in FIG. 4. In FIG. 4, some of the container stacks 12 may include two or more containers holding bulk material, and these containers 28 may be positioned in a stacked arrangement over one another. The entire stack 12 may still be elevated over the blender 16. Each of the containers 28 in a given stack 12 may be replaceable such that once the bulk material from the container stack 12 runs low, a new container 28 may be placed on the stack 12 to maintain a steady flow of bulk material to the blender 16. In some embodiments, the lower container 28a in one or more of the stacks 12 may remain generally stationary while the upper container 28b is selectively removable from the lower container 28. This allows the upper container 28b to be selectively removed and replaced to maintain the desired flow of bulk material throughout the system 10. However, it should be noted that the lower container 28a may also be selectively removed and replaced if the lower container 28a has been completely emptied.


In addition, one or more of the container stacks 12 disposed around the blender receptacle 50 may include just a single stackable container 28. The single container 28 may be used in a stack 12, for example, when less than one container full of a certain bulk material is needed for a particular well treatment, while more than one of the container full of another bulk material is needed from the other stacks 12. As illustrated, the single container 28 may be positioned proximate the receiving bin 50 with its gravity feed outlet 52 extending into the receiving bin 50. The other stacks 12 may each include an outlet 52 extending from the lowest container 28a of the stack 12, to dispense bulk material from the container stacks 12 directly into the blender receptacle 50. As discussed in detail below, other embodiments of the container stack 12 may include gravity feed outlets extending from both the upper and lower containers 28 directly to the blender receptacle 50.


Each container 28 in the container stack 12 may hold the same type, particle size, and/or material of bulk material in some embodiments. In other embodiments, the containers 28 in the stack 12 may hold different types, particle sizes, and/or materials of bulk material. Similarly, different stacks 12 disposed around the blender 16 may hold different types, particle sizes, and/or material of bulk material. These different bulk materials may be used to provide a desired treating fluid for the treating process being performed. For example, when performing fracturing operations, it may be desirable to initially pump a treating fluid having smaller proppant particles downhole, to start opening perforations formed within the well. After this, the fracturing treatment may proceed to pumping a treating fluid with large proppant particles downhole, to expand the openings in the perforations. In some embodiments, the large proppant particles may be supplied from one stack 12 after the smaller proppant is used from another stack 12. In other embodiments, the large proppant may be supplied from one container 28 (e.g., upper container 28b) within a stack 12 after the smaller proppant particles are used from the other container 28 (e.g., lower container 28a) in the stack 12.



FIG. 5 illustrates another embodiment of the container stacks 12 that may be used to provide bulk material directly into the blender receptacle 50. As shown in FIG. 5, the container stacks 12 may each feature two containers 28 stacked one over another. Each of the containers 28 (including the upper containers 28b) in the container stacks 12 may include a gravity feed outlet 52 extending from the container 28, to dispense bulk material from the container 28 directly into the blender receptacle 50. This arrangement may provide additional flexibility for unloading bulk material from the container stack 12, by enabling the upper containers 28b to release bulk material directly into the blender receptacle 50 without first emptying the lower containers 28a. This may allow the container stacks 12 to provide even more efficient switching between types of bulk material supplied to the blender receptacle 50.


As illustrated and described above with reference to FIGS. 2-5, the stacks 12 of containers 28 may be stationed around the blender receptacle 50. In some embodiments, each container 28 when filled to maximum capacity may hold approximately one tank truck worth of bulk material. To accommodate this amount of bulk material capacity, each of the containers 28 may have an internal volume of up to approximately 14 cubic meters for holding bulk material. In other embodiments, however, the containers 28 used in the container stacks 12 may hold a smaller or larger amount of bulk material than a tank truck. Some containers 28 that are smaller may be more easily stackable using a hoisting mechanism, such as a forklift. Other containers 28 may be larger or elevated to a height where they may be stacked using a more heavy-duty hoisting mechanism, such as a crane.


In FIGS. 2-5, each of the container stacks 12 disposed around the blender receptacle 50 may provide a gravity feed of bulk material into the blender receptacle 50. That is, the bulk material is moved from the containers 28 into the blender receptacle 50 via gravity, instead of on a conveyor. This may keep the bulk material from generating a large amount of dust, since the bulk material is flowing into the blender receptacle 50 instead of falling into the receptacle (which would cause air entrainment of the dust) as more capacity within the blender receptacle 50 becomes available.


The containers 28, both individually and within their stacks 12, may utilize a choke-feed mode to meter the bulk material into the blender receptacle 50. In FIGS. 2 and 5, all the containers 28 (and/or gravity feed outlets extending therefrom) in the container stacks 12 may be shaped to provide a choke feed for the bulk material output from the container 28 into the blender receptacle 50. Once a pile of bulk material is established in the blender receptacle 50, this pile may regulate the amount of bulk material that can be directed into the blender receptacle 50.


In the two-container stacks of FIG. 4, the upper container 28b (and/or a gravity feed outlet extending therefrom) may be shaped to provide a choke feed for the bulk material output from the upper container into the lower container 28a. Similarly, the lower container 28a (and/or the outlet 52 extending therefrom) may be shaped to provide a choke feed for the bulk material output from the lower container to the blender receptacle 50. Once a pile of bulk material is established within the lower container 28a and/or the blender receptacle 50, this pile may regulate the amount of bulk material that can be directed into the container 28 and/or blender receptacle 50.


A more detailed description of the choke feed established by one or more of the containers 28 in the stacks 12 of FIGS. 2-5 will now be provided. It should be noted that any number of intermediate containers may be stacked between the upper and lower container 28 in the stack 12, and these intermediate containers may be arranged to provide a choke feed as well.


In general, the gravity feed outlet 52 may extend from one or more of the containers 28 in a given stack 12 to the blender receptacle 50 such that additional bulk material is discharged from the outlet 52 at a fill level of the bulk material already present in the blender receptacle 50. When an outlet valve or dumping mechanism on the container 28 is actuated, the top of the outlet 52 may be opened and kept open while the outlet 52 fills the blender receptacle 50. The bulk material may travel down the outlet 52 and be discharged into the blender receptacle 50 under a force due to gravity working on the bulk material. In embodiments where solid bulk material is used, an angle of repose of the bulk material in the blender receptacle 50 may affect the flow rate of material from the outlet 52.


In some embodiments (e.g., FIG. 4), another gravity feed outlet 54 may extend from the upper container 28b to the lower container 28a such that additional bulk material is discharged from the outlet 54 at a fill level of the bulk material already present in the lower container 28a. When an outlet valve or dumping mechanism on the upper container 28b is actuated, the top of the outlet 54 may be opened and kept open while the outlet 54 fills the lower container 28a. The bulk material may travel down the outlet 54 and be discharged into the lower container 28a under a force due to gravity working on the bulk material. In embodiments where solid bulk material is used, an angle of repose of the bulk material in the lower container 28 may affect the flow rate of material from the outlet 54.


In some embodiments, the lower containers 28a may hold a first type, particle size, or material of bulk material (A), while the upper containers 28b may hold a second type, particle size, or material of bulk material (B). The bulk material A may be the same or different from the bulk material B. In FIG. 4, as the lower container 28a in a container stack 12 outputs the bulk material A into the blender receptacle 50, the bulk material B may be dispensed into the top of the lower container 28a via a gravity feed outlet such as a chute, duct, opening, or other transfer mechanism between the upper and lower containers 28. Once all the bulk material A is dispensed from the lower container 28a into the blender receptacle 50, the lower container 28a may be completely filled with the bulk material B received from the upper container 28b. It may be desirable, in some instances, to arrange the containers 28 in a desired stacked order so that a desired bulk material is provided to the blender receptacle 50 at a certain time. Also, it may be desirable to arrange the container stacks 12 so that all the container stacks 12 are designed to output the same bulk material into the blender receptacle 50 at the same time.


In other embodiments, each container stack 12 may include one or more containers 28 holding the same type, particle size, and material of bulk material. Additionally, each container stack 12 may be used to supply a different type of bulk material to the blender receptacle 50. For example, the stack 12 in FIG. 4 having just one container 28 may be used to provide a first type of bulk material that is different from a second type of bulk material supplied by one or more of the two-container stacks 12. The three two-container stacks 12 in FIG. 4 may all be used to provide a second type of material that is needed in larger quantities to the blender receptacle 50. It should be noted that other arrangements of different materials within the container stacks 12 may be utilized in other embodiments. For example, in the embodiments of FIGS. 2 and 5, each of the container stacks 12 may be used to provide a different type of bulk material to the blender receptacle 50.


In the embodiments of FIGS. 2-5, each container stack 12 includes one stackable container 28 or two containers 28 stacked one over the other. However, it should be noted that other embodiments of the system 10 may utilize three or more containers 28 disposed in a stacked arrangement to form container stacks 12 for supplying bulk material into the blender receptacle 50. In embodiments with a large number of containers 28 in each stack, the containers 28 may need to be lifted higher via a hoisting mechanism (e.g., crane or forklift). Container stacks 12 that have a larger number of containers 28 disposed therein, however, may provide a relatively high bulk material capacity, allowing more time for replacing the containers 28 as needed while performing the well treatment. Similarly, a greater number of container stacks 12 may be positioned around the blender receptacle 50 to increase the capacity of the bulk material transfer system 10.


A top view of the arrangement of containers stacks 12 of FIG. 4 is illustrated in FIG. 6. As shown, the containers 28 may be positioned around different sides of the blender receptacle 50. As noted above, the gravity feed outlets 52 may extend downward from the lowest containers 28a in the container stacks 12 to direct bulk material freely from the container stacks 12 into the blender receptacle 50 as desired.


Another arrangement of containers stacks 12 is illustrated in FIG. 7. In this embodiment, the container stacks 12 may be arranged linearly along a single side of the blender receptacle 50. Any other desirable arrangement of the container stacks 12 may be implemented at a given well site. For example, the containers stacks 12 may be positioned around 2 or 3 sides of the blender receptacle 50.


Arranging the container stacks 12 on just one side of the blender receptacle 50 may enable a more efficient use of space at the well site. This arrangement may also enable transportation units (e.g., trucks) to more efficiently maneuver through the well site, as they only need to park on a single side of the blender receptacle 50 to provide new containers 28 to the container stacks 12 and/or to receive empty containers that are being removed from the stacks 12.


The containers 28 used in the container stacks 12 described above may be any desirable shape. For example, the containers 28 may be squared (as shown in FIG. 8A), rounded (as shown in FIG. 8B), cylindrical, oblong, oval, slightly bowed, or any other desirable shape. The containers 28 may be a “dump” type of container with one or more hatches at the bottom designed to automatically open in a manner that dumps the bulk material out of the container 28. The “dump” type of containers 28 may also include one or more operable gates on the bottom of the containers 28 designed to be opened/closed to dump the bulk material.


In some embodiments, the containers 28 may include one or more Super Sack® containers. When using these types of containers 28, the automatic dumping may be achieved by moving the sack across a sharp blade. Once the bulk material is transferred therefrom, the empty sacks may be removed and deposited in a trash bin. In other embodiments, the containers 28 may include one or more reusable sacks with a relatively stronger construction that enables the sacks to be refilled off location. That way, the sacks can later be returned to and re-used as containers 28 in the container stacks 12. These reusable sacks may be constructed as larger than existing Super Sacks and designed so they can be filled from the top and emptied out of the bottom.


In some embodiments, the containers 28 may be partially or fully enclosed to guard the bulk material against the elements (e.g., sun, rain, and other weather). The containers 28 may be equipped with additional side walls disposed around the internal volume of the containers 28, for aesthetic reasons as well as to enable easier cleanup after the container 28 is emptied and removed from the stack 12. That is, any dust generated from within the internal volume of the container 28 may be contained within the additional side walls and enclosed portions and then subsequently removed or filtered, to prevent undesirable dust accumulation outside the container 28. In some embodiments, the containers 28 may be constructed with one or more coupling mechanisms (e.g., hooks, latches, slots) to enable engagement between the container 28 and a hoisting mechanism (e.g., crane, forklift, etc.) used to raise or lower the container 28.


Bulk material inventory tracking may be generally desired at the well site. As shown in FIG. 4, such bulk material inventory tracking may be accomplished through a number of different sensors 70 disposed about the well site. These sensors 70 may be communicatively coupled to one or more controllers 72 (e.g., automated control system), which utilize at least a processor component 74 and a memory component 76 to monitor and/or control inventory at the well site. For example, one or more processor components 74 may be designed to execute instructions encoded into the one or more memory components 76. Upon executing these instructions, the processors 74 may provide passive logging of the amount, type, and location of certain bulk materials at the well site. In some embodiments, the one or more processors 74 may execute instructions for controlling the amount, type, and location of bulk materials that are being transported about the well site. For example, the processors 74 may output signals at a user interface 78 for instructing operators to remove an empty container 28 from a stack 12 and replace the container 28 with a new container 28 holding a certain type of bulk material needed for the well treatment. Other types of instructions for inventory control/monitoring may be provided through the disclosed systems.


As noted above, the inventory control system 72 may include a number of different sensors 70. In some embodiments, these sensors 70 may include one or more load cells or bin full switches for tracking a level of bulk material in a container 28 and indicating whether a container 28 is empty, full, or partially full. Such sensors 70 may be used for any given container 28, the blender receptacle 50, a silo (not shown), or any other component at the well site. In addition, in some embodiments the sensors 70 may include RFID tags used to provide an indication of the particle size, bulk volume, weight, type, material, and/or supplier of the bulk material disposed in a certain container 28. In such instances, the controller 72 may be communicatively coupled to an RFID reader disposed in proximity to the containers 28 being moved about the well site.


In some embodiments, the containers 28 may include one or more electronic sensors 70 used to determine and indicate whether the container 28 is full or empty. As noted above, such electronic sensors 70 may be communicatively coupled (e.g., wirelessly) to an automated control system 72. The sensors 70 may instruct the system 10 or operators to proceed to the next available container when an “empty” or “nearly empty” signal is detected. In other embodiments, the containers 28 may be equipped with a mechanical sensor or mechanical indicator for indicating whether the container 28 is full or empty.


It may be particularly desirable for the upper (B) containers 28b of FIG. 4 to be equipped with sensors 70 for detecting whether the container 28 is full or empty. Once the upper container 28b is empty, an operator may receive an instruction from the automated control system 72 to remove and replace the empty container 28 with a new, full container 28. Thus, the lower container(s) 28a in the container stacks 12 may maintain a desired capacity of bulk material for supplying the blender receptacle 50 even while a hoisting mechanism is being used to remove and replace empty containers 28 from the stacks 12. This additional bulk material capacity may enable the well treatment operations to continue as desired while operators are reloading the container stacks 12. By swapping only the upper containers 28b of the container stacks 12, the activity of hoisting mechanisms and other transportation systems may be reduced while maintaining the desired mixing and well treatment operations.


As described above, the disclosed system utilizes several relatively small, independent containers 28 to hold the bulk material needed for a well treatment, instead of a pneumatically filled silo. This arrangement of individual containers 28 may provide relatively easy methods for transporting the bulk material around the well site. For example, the containers 28 may enable quick unloading of a transportation unit and quick loading/re-loading of the container stacks 12 using a forklift or other hoisting mechanism. This type of unloading/loading may be accomplished more efficiently than a pneumatic loading process. In addition, the containers 28 may be quickly pushed out of the way and removed from the container stacks 12 once emptied. The smaller volumes of bulk material provided in the containers 28 may enable a relatively rapid change of the type of bulk material delivered to the blender receptacle 50, allowing for quick customization of the well treatment. The multiple containers 28 (particularly when arranged in multiple stacks 12 feeding into the same blender receptacle 50) may provide a buffer for bulk material delivery so that the blender receptacle 50 is constantly being supplied with bulk material while transportation units are arriving and being unloaded at the well site. Furthermore, once the treatments are completed at the well site, any remainder of filled containers 28 may be easily hauled away or otherwise removed from location.


By making the bulk material unloading/loading process on location more efficient, the disclosed techniques may reduce the detention costs accrued at the well site, since transportation units may be able to unload their materials faster than would be possible using pneumatics. In addition, the disclosed techniques may enable the transfer of bulk material on location without generating excessive noise that would otherwise be produced through a pneumatic loading process. Still further, the bulk material remains in the individual containers 28 until it is output directly into the blender receptacle 50 via the container stack 12 and corresponding gravity feed outlet 52. Since the bulk material remains in the containers 28, instead of being released onto a conveyor, the container stacks 12 may enable movement of bulk material on location without generating a large amount of dust.


Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.

Claims
  • 1. A system, comprising: a blender receptacle associated with a blender and having a single opening therein;a platform disposed proximate the blender;a first container disposed on the platform proximate to and elevated above the blender receptacle and holding bulk material, wherein the first container is pre-filled, portable, removable from the platform, and interchangeable with additional containers to be selectively disposed on the platform; anda first gravity feed outlet extending downward from the first container for routing the bulk material from the first container directly into the blender receptacle, wherein the first container is physically detached from the first gravity feed outlet, wherein the first gravity feed outlet is physically detached from the blender receptacle, and wherein the first gravity feed outlet extends through the single opening of the blender receptacle and/or to a position directly above and aligned with the single opening in a vertical direction;wherein the first gravity feed outlet is a chute, and an opening in an upper end of the chute is disposed below and in vertical alignment with a discharge opening located on a bottom surface of the container.
  • 2. The system of claim 1, further comprising a second container holding bulk material, wherein the second container is disposed in a stacked arrangement above the first container to output the bulk material from the second container toward the blender receptacle.
  • 3. The system of claim 2, wherein the second container is disposed in the stacked arrangement above the first container to output the bulk material from the second container into the first container.
  • 4. The system of claim 2, further comprising a second gravity feed outlet extending downward from the second container for routing the bulk material from the second container directly into the blender receptacle.
  • 5. The system of claim 2, wherein the second container is selectively removable from the first container.
  • 6. The system of claim 2, wherein the second container is shaped and positioned to provide a choke feed for the bulk material output from the second container such that the bulk material from the second container exits an outlet of the second container at a fill level of bulk material already present in the first container, and wherein the first gravity feed outlet is shaped and positioned to provide a choke feed for the bulk material output from the first container through the first gravity feed outlet to the blender receptacle such that the bulk material from the first container exits the first gravity feed outlet at a fill level of bulk material already present in the blender receptacle.
  • 7. The system of claim 1, wherein the first gravity feed outlet is shaped to provide a choke feed for the bulk material output from the first container through the first gravity feed outlet to the blender receptacle such that the bulk material from the first container exits the first gravity feed outlet at a fill level of bulk material already present in the blender receptacle.
  • 8. The system of claim 1, wherein the blender receptacle comprises a mixing compartment of the blender where the bulk material is mixed with additives to generate a treatment fluid.
  • 9. The system of claim 1, wherein the blender receptacle comprises a hopper disposed on the blender for routing the bulk material to a mixing compartment of the blender, wherein the hopper is coupled to the mixing compartment via a metering mechanism disposed between the hopper and the mixing compartment.
  • 10. The system of claim 1 wherein the first gravity feed outlet extends through the single opening of the blender receptacle such that a lower end of the first gravity feed outlet is located within the blender receptacle at a position below the single opening.
  • 11. The system of claim 1, further comprising a plurality of containers including the first container, wherein each of the plurality of containers is pre-filled and portable, wherein each of the plurality of containers is elevated to approximately a same height above the blender receptacle.
  • 12. The system of claim 11, wherein the plurality of containers are arranged in a horizontal line relative to each other, wherein the horizontal line of containers is located a distance away from the blender receptacle in a direction perpendicular to a vertical direction and perpendicular to the horizontal line.
  • 13. The system of claim 1, wherein the first container is fully enclosed via one or more side walls and an upper surface covering an entire area between the one or more side walls, and wherein the first container comprises a gate located at a lower surface of the first container for dispensing the bulk material.
  • 14. The system of claim 1, further comprising: a sensor comprising one or more load cells or bin full switches configured to track an amount of bulk material in the first container; anda controller comprising a processor and a memory, wherein the controller is communicatively coupled to the sensor, and wherein the memory contains instructions that, when executed by the processor, cause the processor to: output to a user interface instructions to remove and replace the first container of bulk material when the sensor indicates that the first container is empty or nearly empty.
  • 15. The system of claim 2, wherein the second container has a footprint and a container volume equal to a footprint and a container volume of the first container.
  • 16. The system of claim 11, further comprising a plurality of gravity feed outlets including the first gravity feed outlet, wherein each of the plurality of gravity feed outlets extends downward from a corresponding one of the plurality of containers for routing bulk material from the container directly into the blender receptacle, wherein the plurality of gravity feed outlets each extend through the single opening of the blender receptacle and/or to a position directly above and aligned with the single opening in a vertical direction.
  • 17. A system comprising: a blender receptacle associated with a blender and having a single opening therein;a platform disposed proximate the blender;a plurality of containers disposed on the platform proximate to and elevated above the blender receptacle and each holding bulk material, wherein the plurality of containers are each pre-filled, portable, and removable from the platform, wherein each of the plurality of containers is elevated to approximately a same height above the blender receptacle; anda plurality of gravity feed outlets, each of the plurality of gravity feed outlets extending downward from a corresponding one of the plurality of containers for routing bulk material from the container directly into the blender receptacle, wherein the plurality of containers are each physically detached from the plurality of gravity feed outlets, and wherein the plurality of gravity feed outlets each extend through the single opening of the blender receptacle.
  • 18. A system, comprising: a blender receptacle associated with a blender and having a single opening therein;a platform disposed proximate the blender;a first container disposed on the platform proximate to and elevated above the blender receptacle and holding bulk material, wherein the first container is pre-filled, portable, removable from the platform, and interchangeable with additional containers to be selectively disposed on the platform;a second container disposed on the platform proximate to and elevated above the blender receptacle and holding bulk material, wherein the second container is pre-filled, portable, removable from the platform, and interchangeable with additional containers to be selectively disposed on the platform;a third container disposed on the platform proximate to and elevated above the blender receptacle and holding bulk material, wherein the third container is pre-filled, portable, removable from the platform, and interchangeable with additional containers to be selectively disposed on the platform;a first gravity feed outlet extending downward from the first container for routing the bulk material from the first container directly into the blender receptacle, wherein the first container is physically detached from the first gravity feed outlet;a second gravity feed outlet extending downward from the second container for routing the bulk material from the second container directly into the blender receptacle, wherein the second container is physically detached from the second gravity feed outlet;a third gravity feed outlet extending downward from the third container for routing the bulk material from the third container directly into the blender receptacle, wherein the third container is physically detached from the third gravity feed outlet;wherein each of the first gravity feed outlet, the second gravity feed outlet, and the third gravity feed outlet extends through the single opening and/or to a position directly above and aligned with the single opening in a vertical direction;wherein each of the first gravity feed outlet, the second gravity feed outlet, and the third gravity feed outlet is a chute, and an opening in an upper end of each chute is disposed below and in vertical alignment with a discharge opening located on a bottom surface of a corresponding one of the first, second, and third containers.
  • 19. The system of claim 18, wherein the blender receptacle comprises a mixing compartment of the blender where the bulk material is mixed with additives to generate a treatment fluid.
  • 20. The system of claim 18, wherein the blender receptacle comprises a hopper disposed on the blender for routing the bulk material to a mixing compartment of the blender, wherein the hopper is coupled to the mixing compartment via a metering mechanism disposed between the hopper and the mixing compartment.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2015/029750 5/7/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2016/178695 11/10/2016 WO A
US Referenced Citations (292)
Number Name Date Kind
710611 Ray Oct 1902 A
722782 Weaver Mar 1903 A
829127 Strauss Aug 1906 A
833790 Miles Oct 1906 A
890641 Hains Jun 1908 A
894749 Von Siller Jul 1908 A
917646 Otto Apr 1909 A
1029126 Hoover Jun 1912 A
1047680 Mills Dec 1912 A
1051883 Hains Feb 1913 A
1224656 McCandliss May 1917 A
1405707 Beers Feb 1922 A
1519153 Mitton Sep 1923 A
1726603 Wallace Sep 1929 A
1795987 Adams Mar 1931 A
1798423 Vogel-Jorgensen Mar 1931 A
2138172 Johnson Nov 1938 A
2231911 Hitt et al. Feb 1941 A
2281497 Hyson et al. Apr 1942 A
2385245 Willoughby Sep 1945 A
2415782 Zademach Feb 1947 A
2513012 Dugas Jun 1950 A
2563470 Kane Aug 1951 A
2652174 Shea Sep 1953 A
2670866 Glesby Mar 1954 A
2678737 Mangrum May 1954 A
2759737 Manning Aug 1956 A
2802603 McCray Aug 1957 A
2867336 Soldini et al. Jan 1959 A
2873036 Noble Feb 1959 A
3049248 Heltzel et al. Aug 1962 A
3083879 Coleman Apr 1963 A
3151779 Rensch et al. Oct 1964 A
3203370 Friedrich et al. Aug 1965 A
3217927 Bale, Jr. et al. Nov 1965 A
3318473 Jones et al. May 1967 A
3326572 Murray Jun 1967 A
3343688 Ross Sep 1967 A
3354918 Coleman Nov 1967 A
3380333 Clay et al. Apr 1968 A
3404963 Fritsche et al. Oct 1968 A
3410530 Gilman Nov 1968 A
3432151 O'Loughlin et al. Mar 1969 A
3467408 Regalia Sep 1969 A
3476270 Cox et al. Nov 1969 A
3602400 Cooke Aug 1971 A
3627555 Driscoll Dec 1971 A
3698693 Poncet Oct 1972 A
3785534 Smith Jan 1974 A
3802584 Sackett, Sr. et al. Apr 1974 A
3986708 Heltzel et al. Oct 1976 A
4023719 Noyon May 1977 A
4058239 Van Mill Nov 1977 A
4138163 Calvert et al. Feb 1979 A
4178117 Brugler Dec 1979 A
4204773 Bates May 1980 A
4248337 Zimmer Feb 1981 A
4258953 Johnson Mar 1981 A
4313708 Tiliakos Feb 1982 A
4395052 Rash Jul 1983 A
4398653 Daloisio Aug 1983 A
4423884 Gevers Jan 1984 A
4473175 Zengaffinen Sep 1984 A
4544279 Rudolph Oct 1985 A
4548507 Mathis et al. Oct 1985 A
4583663 Bonerb Apr 1986 A
4626166 Jolly Dec 1986 A
4701095 Berryman et al. Oct 1987 A
4806065 Holt et al. Feb 1989 A
4850702 Arribau et al. Jul 1989 A
4854714 Davis Aug 1989 A
4856681 Murray Aug 1989 A
4900157 Stegemoeller et al. Feb 1990 A
4919540 Stegemoeller et al. Apr 1990 A
4956821 Fenelon Sep 1990 A
4993883 Jones Feb 1991 A
4997335 Prince Mar 1991 A
5036979 Selz Aug 1991 A
5096096 Calaunan Mar 1992 A
5114169 Botkin et al. May 1992 A
5149192 Hamm et al. Sep 1992 A
5303998 Whitlatch et al. Apr 1994 A
5339996 Dubbert et al. Aug 1994 A
5343813 Septer Sep 1994 A
5375730 Bahr et al. Dec 1994 A
5401129 Eatinger Mar 1995 A
5413154 Hurst, Jr. et al. May 1995 A
5426137 Allen Jun 1995 A
5441321 Karpisek Aug 1995 A
5443350 Wilson Aug 1995 A
5445289 Owen Aug 1995 A
5590976 Kilheffer et al. Jan 1997 A
5609417 Otte Mar 1997 A
5722552 Olson Mar 1998 A
5772390 Walker Jun 1998 A
5806441 Chung Sep 1998 A
5913459 Gill et al. Jun 1999 A
5915913 Greenlaw et al. Jun 1999 A
5927356 Henderson Jul 1999 A
5944470 Bonerb Aug 1999 A
5997099 Collins Dec 1999 A
6059372 McDonald et al. May 2000 A
6112946 Bennett et al. Sep 2000 A
6126307 Black et al. Oct 2000 A
6193402 Grimland et al. Feb 2001 B1
6247594 Garton Jun 2001 B1
6379086 Goth Apr 2002 B1
6425627 Gee Jul 2002 B1
6481883 Ellen Nov 2002 B1
6491421 Rondeau et al. Dec 2002 B2
6517232 Blue Feb 2003 B1
6536939 Blue Mar 2003 B1
6537015 Lim et al. Mar 2003 B2
6568567 McKenzie et al. May 2003 B2
6622849 Sperling Sep 2003 B1
6655548 McClure, Jr. et al. Dec 2003 B2
6876904 Oberg Apr 2005 B2
6980914 Bivens et al. Dec 2005 B2
7008163 Russell Mar 2006 B2
7086342 O'Neall et al. Aug 2006 B2
7100896 Cox Sep 2006 B1
7114905 Dibdin Oct 2006 B2
7252309 Soon et al. Aug 2007 B2
7284579 Elgan Oct 2007 B2
7351025 Galijan Apr 2008 B2
7451015 Mazur et al. Nov 2008 B2
7475796 Garton Jan 2009 B2
7500817 Furrer et al. Mar 2009 B2
7513280 Brashears et al. Apr 2009 B2
7665788 Dibdin et al. Feb 2010 B2
7762281 Schuld Jul 2010 B2
7997213 Gauthier et al. Aug 2011 B1
8387824 Wietgrefe Mar 2013 B2
8434990 Claussen May 2013 B2
D688349 Oren et al. Aug 2013 S
D688350 Oren et al. Aug 2013 S
D688351 Oren et al. Aug 2013 S
D688772 Oren et al. Aug 2013 S
8505780 Oren Aug 2013 B2
8545148 Wanek-Pusset et al. Oct 2013 B2
8573917 Renyer Nov 2013 B2
8585341 Oren Nov 2013 B1
8607289 Brown et al. Dec 2013 B2
8616370 Allegretti et al. Dec 2013 B2
8622251 Oren Jan 2014 B2
8662525 Dierks et al. Mar 2014 B1
8668430 Oren et al. Mar 2014 B2
D703582 Oren Apr 2014 S
8827118 Oren Sep 2014 B2
8834012 Case et al. Sep 2014 B2
8887914 Allegretti et al. Nov 2014 B2
RE45713 Oren et al. Oct 2015 E
9162603 Oren Oct 2015 B2
RE45788 Oren et al. Nov 2015 E
9248772 Oren Feb 2016 B2
RE45914 Oren et al. Mar 2016 E
9296518 Oren Mar 2016 B2
9340353 Oren et al. May 2016 B2
9358916 Oren Jun 2016 B2
9394102 Oren et al. Jul 2016 B2
9403626 Oren Aug 2016 B2
9421899 Oren Aug 2016 B2
9440785 Oren et al. Sep 2016 B2
9446801 Oren Sep 2016 B1
9475661 Oren Oct 2016 B2
9511929 Oren Dec 2016 B2
9522816 Taylor Dec 2016 B2
9527664 Oren Dec 2016 B2
9580238 Friesen et al. Feb 2017 B2
RE46334 Oren et al. Mar 2017 E
9617065 Allegretti et al. Apr 2017 B2
9617066 Oren Apr 2017 B2
9624030 Oren et al. Apr 2017 B2
9624036 Luharuka et al. Apr 2017 B2
9643774 Oren May 2017 B2
9650216 Allegretti May 2017 B2
9656799 Oren et al. May 2017 B2
9669993 Oren et al. Jun 2017 B2
9670752 Glynn et al. Jun 2017 B2
9676554 Glynn et al. Jun 2017 B2
9682815 Oren Jun 2017 B2
9694970 Oren et al. Jul 2017 B2
9701463 Oren et al. Jul 2017 B2
9718609 Oren et al. Aug 2017 B2
9718610 Oren Aug 2017 B2
9725233 Oren et al. Aug 2017 B2
9725234 Oren et al. Aug 2017 B2
9738439 Oren et al. Aug 2017 B2
RE46531 Oren et al. Sep 2017 E
9758081 Oren Sep 2017 B2
9758993 Allegretti et al. Sep 2017 B1
9771224 Oren et al. Sep 2017 B2
9783338 Allegretti et al. Oct 2017 B1
9796319 Oren Oct 2017 B1
9796504 Allegretti et al. Oct 2017 B1
9809381 Oren et al. Nov 2017 B2
9828135 Allegretti et al. Nov 2017 B2
9840366 Oren et al. Dec 2017 B2
9969564 Oren et al. May 2018 B2
9988182 Allegretti et al. Jun 2018 B2
10059246 Oren Aug 2018 B1
10081993 Walker et al. Sep 2018 B2
10189599 Allegretti et al. Jan 2019 B2
10207753 O'Marra et al. Feb 2019 B2
10287091 Allegretti May 2019 B2
10308421 Allegretti Jun 2019 B2
10486854 Allegretti et al. Nov 2019 B2
10518828 Oren et al. Dec 2019 B2
10604338 Allegretti Mar 2020 B2
20020121464 Soldwish-Zoole et al. Sep 2002 A1
20030159310 Hensley et al. Aug 2003 A1
20040008571 Coody et al. Jan 2004 A1
20040031335 Fromme et al. Feb 2004 A1
20040206646 Goh et al. Oct 2004 A1
20040258508 Jewell Dec 2004 A1
20050219941 Christenson et al. Oct 2005 A1
20060013061 Bivens et al. Jan 2006 A1
20060120209 Galijan Jun 2006 A1
20070014185 Diosse Jan 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20080187423 Mauchle Aug 2008 A1
20080273415 Thornton Nov 2008 A1
20080294484 Furman et al. Nov 2008 A1
20090078410 Krenek et al. Mar 2009 A1
20090129903 Lyons, III May 2009 A1
20090177313 Heller et al. Jul 2009 A1
20090292572 Alden et al. Nov 2009 A1
20090314791 Hartley et al. Dec 2009 A1
20100025041 Phillippi Feb 2010 A1
20100196129 Buckner Aug 2010 A1
20100319921 Eia et al. Dec 2010 A1
20110211418 Tassone Sep 2011 A1
20120017812 Renyer et al. Jan 2012 A1
20120018093 Zuniga et al. Jan 2012 A1
20120037231 Janson Feb 2012 A1
20120181093 Fehr et al. Jul 2012 A1
20120219391 Teichrob et al. Aug 2012 A1
20130128687 Adams May 2013 A1
20130135958 O'Callaghan May 2013 A1
20130142601 McIver et al. Jun 2013 A1
20130206415 Sheesley Aug 2013 A1
20130284729 Cook et al. Oct 2013 A1
20140023463 Oren Jan 2014 A1
20140044508 Luharuka et al. Feb 2014 A1
20140076569 Pham et al. Mar 2014 A1
20140083554 Harris Mar 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140299225 Oren Oct 2014 A1
20140305769 Eiden, III et al. Oct 2014 A1
20140377042 McMahon Dec 2014 A1
20150003955 Oren et al. Jan 2015 A1
20150016209 Barton et al. Jan 2015 A1
20150044004 Pham et al. Feb 2015 A1
20150183578 Oren et al. Jul 2015 A9
20150191318 Martel Jul 2015 A1
20150284194 Oren et al. Oct 2015 A1
20150353293 Richard Dec 2015 A1
20150366405 Manchuliantsau Dec 2015 A1
20150368052 Sheesley Dec 2015 A1
20150375930 Oren et al. Dec 2015 A1
20160031658 Oren et al. Feb 2016 A1
20160039433 Oren et al. Feb 2016 A1
20160046438 Oren et al. Feb 2016 A1
20160046454 Oren et al. Feb 2016 A1
20160068342 Oren et al. Mar 2016 A1
20160130095 Oren et al. May 2016 A1
20160244279 Oren et al. Aug 2016 A1
20160264352 Oren Sep 2016 A1
20160280476 Stegemoeller Sep 2016 A1
20160332809 Harris Nov 2016 A1
20160332811 Harris Nov 2016 A1
20170021318 McIver et al. Jan 2017 A1
20170123437 Boyd et al. May 2017 A1
20170129696 Oren May 2017 A1
20170144834 Oren et al. May 2017 A1
20170203915 Oren Jul 2017 A1
20170217353 Vander Pol et al. Aug 2017 A1
20170217671 Allegretti Aug 2017 A1
20170225883 Oren Aug 2017 A1
20170240350 Oren et al. Aug 2017 A1
20170240361 Glynn et al. Aug 2017 A1
20170240363 Oren Aug 2017 A1
20170267151 Oren Sep 2017 A1
20170283165 Oren et al. Oct 2017 A1
20170313497 Schaffner et al. Nov 2017 A1
20170334639 Hawkins et al. Nov 2017 A1
20170349226 Oren et al. Dec 2017 A1
20180257814 Allegretti et al. Sep 2018 A1
20180369762 Hunter et al. Dec 2018 A1
20190009231 Warren et al. Jan 2019 A1
20190111401 Lucas et al. Apr 2019 A1
20200062448 Allegretti et al. Feb 2020 A1
Foreign Referenced Citations (16)
Number Date Country
2937826 Oct 2015 EP
2066220 Jul 1981 GB
2204847 Nov 1988 GB
01-122831 May 1989 JP
06-182767 Jul 1994 JP
2008239019 Oct 2008 JP
2008012513 Jan 2008 WO
2013095871 Jun 2013 WO
2013142421 Sep 2013 WO
2014018129 Jan 2014 WO
2014018236 May 2014 WO
2015119799 Aug 2015 WO
2015191150 Dec 2015 WO
2015192061 Dec 2015 WO
2016044012 Mar 2016 WO
2016160067 Oct 2016 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2015/029750 dated Jan. 26, 2016, 13 pages.
International Preliminary Report on Patentability issued in related PCT Application PCT/US2015/029750, dated Nov. 16, 2017, 10 pages.
Search report issued in related Canadian application No. 2,967,291, dated May 30, 2018 (6 pages).
Office Action issued in related Canadian Patent Application No. 2,996,055 dated Oct. 2, 2020, 5 pages.
U.S. Pat. No. 0,802,254A, dated Oct. 17, 1905, “Can-Cooking Apparatus,” John Baker et al.
Related Publications (1)
Number Date Country
20170327326 A1 Nov 2017 US