This application claims priority to U.S. patent application Ser. No. 29/706,749, entitled “Container Cap,” filed Sep. 23, 2019, which is hereby incorporated by reference in its entirety.
The present disclosure relates generally to caps for containers. More particularly, the present disclosure relates to caps including a compound as described herein.
Various caps are known for dispensing a compound into a container. Previous caps generally included a lid and a body that substantially form a cap. Within the lid and the body of the cap is the compound, which is selected to dispense into the container. To prevent tampering or contamination of the compound, previous caps are designed for single use, such that a force is required to separate the lid and the body, and therefore dispose a further compound into the cap, such a force is so great as to discourage the user. Furthermore, previous caps required users to perform complex operations to dispense the compound, such as a combination of rotational and translational movements of the lid relative to the body.
Given the above background, what is needed in the art are cap devices that allow for improved operations for dispensing of a compound. In particular, there is a need for enabling a user to utilize a cap device for dispensing a compound into a container with an improved operation, and reusing the cap device for further dispensing operations.
The present disclosure addresses the above-identified need in the art. In the present disclosure cap devices and methods thereof are provided.
One aspect of the present disclosure provides a cap device for accommodating and dispensing a compound into a container. The cap device includes a body. The body includes an upper end portion, a lower end portion, and an opening. The opening defines a volume for accommodating the compound. Further, the opening penetrates through a central axis of the body by a first length. The opening penetrates from the upper end portion to the lower end portion of the body. A membrane is disposed at a lower end portion of the opening. The membrane includes a diameter greater than a diameter of the opening, such that the membrane seals the lower end portion of the opening. A lid is removably coupled and moveable relative to the upper end portion of the body. The lid includes an upper end portion including an exterior surface and an interior surface. The lid further includes a protrusion extending downwardly from the interior surface of the lid. The protrusion having a second length greater than the first length of the opening of the body. Moreover, a diameter of the protrusion corresponds to the diameter of the opening. As such, the opening of the body accommodates a lower end portion of the protrusion. A spacer removably engages the upper end portion of the lid. The spacer interposes between the upper end portion of the lid and the upper end portion of the body. Moreover, the spacer is configurable between a first state and a second state. In the first state, the spacer engages with the lid, increasing a distance between the upper end portion of the lid and the lower end portion of the opening by the third length. This increase in distance prevents the protrusion from penetrating the membrane, or the seal formed by the membrane. In the second state, the spacer is disengaged with the lid, removing the third length from the distance between the upper end portion of the lid and the lower end portion of the opening. With the spacer disengaged, the protrusion of the lid penetrates the membrane of the body. Accordingly, the compound dispenses from the cap device into the container.
In some embodiments, the body further includes a gate disposed at the lower end portion of the opening. The gate is movable between a first position, in which the gate occupies a first portion of the opening, and a second position, in which the gate occupies a second portion of the opening.
In some embodiments, the gate is internally disposed at the lower end portion of the opening above the membrane.
In some embodiments, a first end portion of the gate is coupled to the lower end portion of the opening, and a second end portion of the gate is free.
In some embodiments, a lower end portion of the protrusion further includes a wedge configured to abut the second end portion of the gate.
In some embodiments, the opening of the body includes a first diameter at an upper end portion of the opening and a second diameter at a lower end portion of the opening. As such, the diameter of the protrusion corresponds to the second diameter of the opening.
In some embodiments, a transition region of the opening from the first diameter to the second diameter occurs over a portion of the first length of the opening.
In some embodiments, the lid and body are moveable relative to a first translational degree of freedom.
In some embodiments, the protrusion further includes a gasket. The gasket interposes between an inner surface of the opening of the body and an outer surface of the protrusion.
In some embodiments, the spacer is integrally formed with the lid. Accordingly, an interface between the spacer and the lid includes a first strength less than a second strength of the spacer and the lid.
In some embodiments, the interface includes a plurality of perforations.
In some embodiments, the interface includes a first thickness less than a second thickness of the spacer and the lid.
In some embodiments, the spacer is a shaft collar.
In some embodiments, the exterior portion of the lid includes a cylindrical portion including a third diameter. Accordingly, the spacer is cylindrical object of the third diameter having a gap at a portion of a circumference of the cylinder forming the spacer. The gap defines a chord length of the cylinder. The chord length of the gap in the first state of the spacer is less than the third diameter. Further, the chord length of the gap in the second state of the spacer is greater than or equal to the third diameter.
In some embodiments, the spacer is elastically deformable, allowing the spacer to transition between states one or more times.
In some embodiments, the diameter of the spacer is in a range of from 85% to 100% of the third diameter.
In some embodiments, an exterior surface of the upper end portion of the body and the interior surface of the upper end portion of the lid include a corresponding mating mechanism.
In some embodiments, the corresponding mating mechanisms of the body and the lid allow the cap device to be configurable between a first state and a second state. In the first state, the body and the lid are free to couple and decouple with each other. In the second state, the body and the lid are prevented from decoupling with each other.
In some embodiments, a transition from the first state to the second state of the cap device is provided through a relative rotational movement of the lid.
In some embodiments, the second state of the cap restricts the relative movement of the lid by one translational degree of freedom.
In some embodiments, the first state restricts a relative movement of the lid to one translational degree of freedom and one rotational degree of freedom. Further, the second state restricts a relative movement of the lid to the one translational degree of freedom.
In some embodiments, the compound includes a fluid, a solid, a granulate, and/or a combination thereof.
Another aspect of the present disclosure provides a method of dispensing a dosage of a compound accommodated in a cap device of a container. The cap device includes a body including an opening. The cap device further includes a lid including a hollow protrusion and a spacer removably coupled to an upper end portion of the lid. The spacer interposes between the upper end portion of the lid and the body. Accordingly, the method includes sealing a lower end portion of the opening of the body with a membrane. Either of the opening or the hollow of the protrusion is filled with the dosage of the compound. The lid and the body of the cap device couple by accommodating the hollow protrusion of the lid within the opening of the body, such that the compound is accommodated in the cap device. A lower end portion of the body and the container are coupled, such that the cap device is coupled to the container. The spacer is removed from the upper end portion of the lid. The lid is depressed further towards to the body, forcing the protrusion to pierce the seal formed by the membrane. Accordingly, the dosage of the compound is dispensed into the container.
In some embodiments, an internal surface of one of the opening or the hollow protrusion of the cap device further includes a plurality of indicia. Each respective indicia defines a unique predetermined dosage. Accordingly, the filling includes filling the one of the opening or the hollow protrusion to one of the indicia of the plurality of indicia with the compound.
In some embodiments, the coupling further includes coupling the spacer to the upper end portion of the lid.
In some embodiments, the spacer is coupled to the upper end portion of the lid prior to coupling the lid and the body.
In some embodiments, the coupling allows a relative movement between the lid and the body with one translational degree of freedom.
In some embodiments, the coupling allows a relative movement between the lid and the body with the one translational degree of freedom and one rotational degree of freedom. Further, prior to the removing, the one translational degree of freedom of the relative movement between the lid and the body is restricted to one direction.
In some embodiments, the coupling allows a relative movement between the lid and the body with one translational degree of freedom.
In some embodiments, a force required for the coupling is less than or equal to a force required for piercing of the depressing.
In some embodiments, the method further includes decoupling the cap device from the container. Accordingly, in some embodiments, the method further includes repeating the sealing through the depressing of the method for either a second dosage of the dispensed compound or a dosage of a second compound.
In some embodiments, the decoupling further includes decoupling the body and the lid of the cap.
In some embodiments, the sealing of the repeating includes removing the pierced membrane from the lid and sealing with a second membrane different from the first membrane.
In some embodiments, the sealing of the repeating includes resealing the lower end portion of the opening of the body with the membrane, thereby reforming the pierced seal.
In some embodiments, the repeating omits the removing.
In some embodiments, the spacer is integrally formed with the upper end portion of the lid. Accordingly, the method further includes decoupling both the body from the container and the lid from the body. Further, in some embodiments, the method includes repeating the sealing through the depressing of the method with a second lid different from the lid of the dispensed compound.
In some embodiments, the container includes a consumable liquid. Accordingly, prior to the decoupling of either of the body from the container or the lid from the body, the method further includes consuming a solution including and/or comprising the consumable liquid and the compound.
Yet another aspect of the present disclosure provides a cap device for accommodating and dispensing a compound into a container. The cap device includes a body. The body includes an upper end portion, a lower end portion, and an opening. The opening penetrates through an axis of the body by a first length from the upper end portion to the lower end portion of the body. A membrane is disposed at a lower end portion of the opening. The membrane includes a diameter greater than a diameter of the opening, such that the membrane seals the lower end portion of the opening. A lid is removably coupled and moveable relative to the upper end portion of the body. The lid includes an upper end portion including an exterior surface and an interior surface. The lid further includes a protrusion extending downwardly from the interior surface of the lid. The protrusion having a second length greater than the first length of the opening of the body. Moreover, a diameter of the protrusion corresponds to the diameter of the opening. As such, the opening of the body accommodates a lower end portion of the protrusion. A spacer is removably coupled to the upper end portion of the lid and interposes between the upper end portion of the lid and the upper end portion of the body. The spacer is configurable between a first state and a second state. In the first state, the spacer is engaged with the lid, increasing a distance between the upper end portion of the lid and the lower end portion of the opening by the third length, preventing the protrusion from penetrating the membrane. In the second state, the spacer is disengaged with the lid, removing the third length from the distance between the upper end portion of the lid and the lower end portion of the opening, allowing the protrusion of the lid to penetrate the membrane of the body and dispense the compound into the container.
Yet another aspect of the present disclosure provides a cap device for accommodating and dispensing a compound into a container. The cap device includes a body. The body includes an upper end portion, a lower end portion, and an opening. The opening penetrates through an axis of the body by a first length from the upper end portion to the lower end portion of the body. A membrane is disposed at a lower end portion of the opening. The membrane includes a diameter greater than a diameter of the opening, such that the membrane seals the lower end portion of the opening. A lid is removably coupled and moveable relative to the upper end portion of the body. The lid includes an upper end portion including an exterior surface and an interior surface. The lid further includes a protrusion extending downwardly from the interior surface of the lid. The protrusion having a second length greater than the first length of the opening of the body. As such, the opening of the body accommodates a lower end portion of the protrusion. A spacer is configurable between a first state and a second state. In the first state, the spacer is engaged with the lid, increasing a distance between the upper end portion of the lid and the lower end portion of the opening by the third length, preventing the protrusion from penetrating the membrane. In the second state, the spacer is disengaged with the lid, removing the third length from the distance between the upper end portion of the lid and the lower end portion of the opening, allowing the protrusion of the lid to penetrate the membrane of the body and dispense the compound into the container.
The embodiments disclosed herein are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings. Like reference numerals refer to corresponding parts throughout the drawings.
The present disclosure provides cap devices that accommodate a compound and dispense the compound into a container. The cap devices include a spacer, that either allows or inhibits the cap device from dispensing the compound. If the spacer allows the user to dispense the compound, the cap device is operated with an improved, simple operation by the user. The improved user operation allows for the dispensing of the compound with minimal user input, such as requiring no rotational movement. Furthermore, the improved user operation allows the user to disengage and reengage various portions of the cap device together without exerting a significant force. This allows for further containers and/or compounds to be utilizable by the cap device, allowing the user to reuse a cap device and conduct multiple dispensing operations over a time period, in some embodiments with the same cap device.
A cap for accommodating a compound includes a body with an opening. The opening extends downwardly from an upper end portion to a lower end portion of the body by a first length. A membrane seals a lower end portion of the opening. A lid is removably coupled and moveable relative to the body. The lid includes a protrusion extending downwardly from an interior surface of the lid by a second length. This second length is greater than or equal to the first length. The opening accommodates a lower end portion of the protrusion, which in combination with the membrane further accommodates the compound within the cap device. A spacer removably couples with the lid and engages with the lid interposing between the lid and the body. A first state of the spacer includes the spacer engaging with the lid, which prevents the protrusion from penetrating the membrane. A second state of the spacer includes the spacer disengaged from the lid, which allows the protrusion of the lid to penetrate the membrane of the body. As such, a user dispenses the compound by disengaging the spacer and the lid, allowing the lid to depress downwardly and penetrate the membrane.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
Plural instances may be provided for components, operations or structures described herein as a single instance. Finally, boundaries between various components are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other forms of functionality are envisioned and may fall within the scope of the implementation(s). In general, structures and functionality presented as separate components in the example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the implementation(s).
It will also be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first compound could be termed a second compound, and, similarly, a second compound could be termed a first compound, without departing from the scope of the present disclosure. The first compound and the second compound are both compounds, but they are not the same compound.
Furthermore, when a reference number is given an “ith” denotation, the reference number refers to a generic component, set, or embodiment. For instance, an indicium termed “indicium i” refers to the ith indicium in a plurality of indicia (e.g., an indicia 800-i in a plurality of indicia 800).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions below are not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments are chosen and described in order to best explain the principles and their practical applications, to thereby enable others skilled in the art to best utilize the embodiments and various embodiments with various modifications as are suited to the particular use contemplated.
In the interest of clarity, not all of the routine features of the embodiments described herein are shown and described. It will be appreciated that, in the development of any such actual implementation, numerous implementation-specific decisions are made in order to achieve the designer's specific goals, such as compliance with use case- and business-related constraints, and that these specific goals will vary from one implementation to another and from one designer to another. Moreover, it will be appreciated that such a design effort might be complex and time-consuming, but nevertheless be a routine undertaking of engineering for those of ordering skill in the art having the benefit of the present disclosure.
For convenience in explanation and accurate definition in the appended claims, the terms “upper,” “lower,” “up,” “down,” “upwards,” “downwards,” “laterally,” “longitudinally,” “inner,” “outer,” “inside,” “outside,” “inwardly,” “outwardly,” “interior,” “exterior,” “front,” “rear,” “back,” “forwards,” and “backwards” are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures.
Referring to
In some embodiments, the cap device 10 accommodates one or more compounds (e.g., compound 700 of
The compound 700 includes a variety of materials including one or more fluids materials, one or more solid materials, or a combination thereof. For instance, in some embodiments, the compound 700 includes one or more concentrated liquids, one or more pastes, one or more granulated solids, one or more emulsions, or the like. In some embodiments, the compound 700 is a consumable compound, such as a material that provides one or more physiological benefits upon consumption by a user. Consumable compounds 700 include pharmaceutical compounds, nutritional compounds such as vitamins and minerals, organic compounds, and the like. In some embodiments, the compound 700 includes one or more prebiotics, with each prebiotic including one or more respective populations of bacteria. In some embodiments, the compound 700 includes an active material (e.g., an active ingredient in a pharmaceutical composition).
The cap device 10 includes a body 100 and a lid 200 that removably engage with each other, allowing a user to repeatedly disposed a compound 700 into, or similarly dispense the compound 700 from, the cap device 10. In some embodiments, this repeated use (e.g., engagement and disengagement of the lid 200 and the body 100) of the cap device 10 allows the user to utilize the same body 100 and/or the same lid 200 for more than one dispensing operation (e.g., block 1116 of the method 1100 of
In some embodiments, the cap device 10 is configured to engage with a predetermined container, or a predetermined size of a container (e.g., a predetermined mouth size of a container, such as a 40 millimeter (mm) standard mouth container). In some embodiments, the body 100 portion of the cap device 10 is configured to engage with a predetermined container, or a predetermined size of a container, whereas the lid 200 portion of the body is a generic component configured to engaging with a sized body 100. For instance, in some embodiments, a first cap device 10-1 is configured using a first body 100-1 and a first lid 200-1 while a second cap device 10-2 is configured using a second body 100-2 and a second lid 200-2. Moreover, in some embodiments, the first cap device 10-1 is configured using the first body 100-1, the second body 100-2, the first lid 200-1, the second lid 200-2, or a combination thereof (e.g., the cap device 10 allows for interchangeable components). As such, in some embodiments, the present disclosure provides cap devices 10 suitable for a variety of containers and/or components of various cap devices 10 (e.g., bodies 100 and/or lids 200).
As illustrated in
The opening 110 is disposed at an upper end portion of the body 100, and configured to accommodate a portion of the lid 200 (e.g., a portion of the protrusion 210). In some embodiments, the opening 110 is formed as a through hole that spans from the upper end portion to the lower end portion of the body 100. For instance, referring briefly to
The opening 110 has a first length (e.g., length L1 of
In some embodiments, the opening 110 defines a volume for accommodating the compound 700, such as a maximum volume, a dosage volume, and the like. In some embodiments, the volume defined by the opening 110 is a volume of the internal cavity of the cap device 10. For instance, in some embodiments, the volume of the opening 110 is a function of the first length L1 of the opening 110 and a diameter (e.g., D1 of
In some embodiments, the cap device 10 further includes one or more indicia (e.g., indicia 800-1 of
Furthermore, in some embodiments, the external surface of the cap device 10 includes one or more indicia 800 (e.g., indicia 800-4 of
Furthermore, in some embodiments, the one or more one or more of the external indicia 800 includes a fifth indicia (e.g., fifth indicia 800-5 of
In some embodiments, the opening 110 of the body 100 is formed in a cylindrical shape (e.g., a cylinder with straight walls, a cone with sloped walls, etc.) that includes a first diameter (e.g., D1 of
Accordingly, in some embodiments, the opening 110 includes a second diameter (e.g., D2 of
In some embodiments, the opening 110 includes the first diameter D1 and the second diameter D2, with a transition region (e.g., transition region 112 of
Furthermore, in some embodiments, one or more indicia 800 are associated with the transition region 112. For instance, in some embodiments, a first indicia 800-1 is associated with a first portion of the body 100 at and/or above the transition 112, a second indicia 800-2 is associated with a second portion of the body 100 at the transition 112, a third indicia 800-3 is associated with a third portion of the body 100 at and/or below the transition 112, or a combination thereof.
One skilled in the art will recognize that, while the present disclosure is described in terms of diameters and circular cross-sectional areas, the present disclosure is not limited thereto. For instance, in some embodiments, each of the describe openings and/or components of the cap device 10 (e.g., opening 110 of body 100, protrusion 210 of lid 200, etc.) and their corresponding diameters are instead formed as a cross-sectional area of any polygon with a characteristic length equal to the corresponding described diameter (e.g., instead of the first diameter D1 of the opening 110 having a circular cross-section with a diameter of 1 centimeter (cm) the first diameter D1 of the opening 110 has a square cross-section with a similar length and width of 1 cm).
In some embodiments, the body 100 includes a skirt 120 that protrudes outwardly from an exterior surface of the body. The skirt 120 provides a region of the body 100 for receiving a portion of a container, such as a mouth of the container. In some embodiments, the skirt 120 is disposed at the upper end portion of the body 100, the lower end portion of the body 100, or interposing between the upper end portion and the lower end portion of the body 100. Moreover, in some embodiments, the skirt 120 protrudes outwardly from the external surface of the opening 110. Further, in some embodiments, the skirt 120 is disposed protruding outwardly from a portion of the opening including the transition region 112. In some embodiments, the skirt 120 extends outwardly from the external surface of the opening 110 by a distance (e.g., a difference between D3 and either of D1 or D2 of the opening 110 of
Furthermore, in some embodiments, the body 100 includes a mating mechanism (e.g., first mating mechanism 130 of
In some embodiments, the skirt 120 of the body 100 includes the first mating mechanism 130 for engaging (e.g., fastening) the body 100 to the container. In some embodiments, the first mating mechanism 130 of the skirt 120 is disposed on an internal surface of the skirt 120, such that the corresponding first mating mechanism of the container is accommodated by a portion of the skirt 120, maintaining sanitation of the container. In some embodiments, the first mating mechanism 130 of the skirt 120 includes an interference mating mechanism (e.g., a press fit or friction fit mating mechanism), such as a latch mechanism or a pin mechanism.
As illustrated in
Further, in some embodiments, the skirt 120 includes a plurality of protrusions 140, each of which extends downwardly from a lower end portion of the skirt 120. In some embodiments, the protrusions 140 engage with an external surface of the container, such as a portion of the neck of the container. The engagement of the protrusions 140 with the surface of the container increases a surface area of the body 100 in contact with the container, which increases an amount of force required to disengage the body 100 from the container. For instance, in some embodiments the protrusions 140 restrict a movement of the body 100 relative to the container if a user engages a lid (e.g., lid 200 of
As described above, the lid 200 of the cap device 10 removably engages with the body 100, allowing respective compounds 700 to be repeatedly disposed and accommodated within the cap device 10 (e.g., block 1106 of
Referring briefly to
As described above, the lid 200 further includes the protrusion 210 that extends downwardly from the interior surface of the lid 200. Depending on a state of the cap device 10 (e.g., if the lid 200 and the body 100 are in, or transitioning to, the second state), the protrusion 210 is accommodated within a portion of the opening 110, allowing the protrusion 210 to traverse in a linear direction (e.g., parallel to axis 160) within the opening 110. In accordance with a force provided to the lid 200, the lid 200, and therefore the protrusion 210, is depressed downwardly towards the lower end portion of the opening 110.
The protrusion 210 extends downwardly from the upper end portion of the lid 200 by a second length (e.g., L2 of
In some embodiments, the second length L2 of the protrusion 210 is greater than or equal to the first length L1 of the opening 110 of the body 100. In some embodiments, the second length L2 of the protrusion 210 is in a range of from 10 mm to 75 mm, from 15 mm to 75 mm, from 20 mm to 75 mm, from 20 mm to 70 mm, from 25 mm to 70 mm, from 25 mm to 65 mm, from 30 mm to 65 mm, from 30 mm to 60 mm, from 25 mm to 60 mm, from 25 mm to 55 mm, from 30 mm to 55 mm, from 30 mm to 50 mm, from 35 mm to 50 mm, from 35 mm to 45 mm, or from 40 mm to 45 mm. In some embodiments, the second length L2 of the protrusion 210 is in 42±0.4 mm (e.g., 41.95 mm). In some embodiments, the second length L2 is measured by a distance from an upper end portion of the protrusion 210 (e.g., an interface between the protrusion 210 and the upper end portion of the lid 200), and a portion of the lower end portion of the protrusion (e.g., a mean length of a wedge 230, a first edge 232 of the wedge, a second edge 234 of the wedge 230, etc.).
Moreover, in some embodiments, a diameter of the protrusion 210 corresponds to the diameter of the opening 110 (e.g., diameter D1) of the body 100. For instance, in some embodiments, the diameter of the protrusion 210 is within a predetermined tolerance of the diameter D1 of the opening 110, allowing for the protrusion 210 to be accommodated by the opening 110 with a close, or snug, fit.
In some embodiments, the protrusion 210 of the lid 200 further includes a gasket 220, which forms a seal between the protrusion 210 and the opening 110. If the lid 200 is engaged with the body 100 (e.g., such that the protrusion 210 is accommodated within the opening 110), the gasket 220 interposes between an inner surface of the opening 110 of the body 100 and an outer surface of the protrusion 210 and preventing a departure of the compound 700 through an interface of the protrusion 210 and the opening 110. In some embodiments, the gasket 220 is integrally formed with an exterior surface of the protrusion 210, such that the gasket 220 is formed as an outwardly protrusion of the exterior surface of the protrusion 210. In some embodiments, the gasket 220 includes an O-ring or a closure liner, which provides a seal between the protrusion 210 and the opening 110 of the cap device 10.
In some embodiments, the cap device 10 includes a membrane (e.g., membrane 400 of
In some embodiments, a surface of the membrane 400 includes an adhesive material (e.g., glue) or a waxy material that allows for the membrane 400 to removable engage with the lower end portion of the opening 110. In some embodiments, the membrane 400 includes a metal material (e.g., an aluminum foil membrane 400) or a plastic material. The membrane 400 is configured such that a strength of the seal between the membrane 400 and the lower end portion of the opening 110, or similarly a rigidity of the membrane 400, is sufficient to support an applied load of the compound 700, and optionally the gate 500, under gravity. Further, the strength of the seal need also be sufficient to yield to a force applied through the protrusion 210 of the lid 200, such that the seal is capable of being pierced. Furthermore, in some embodiments, the membrane 400 includes a semi-permeable portion. For instance, in some embodiments, the semi-permeable portion of the membrane 400 allows for fluidic communication between an environment and the internal cavity of the cap device 10, such that an internal pressure of the internal cavity of the cap device 10 and an atmospheric pressure are equal.
Additionally, the cap device 10 includes a spacer (e.g., spacer 300 of
The spacer 300 includes a third length (e.g., length L3 of
In some embodiments, the spacer 300 includes a mechanism (e.g., mechanism 310 of
Moreover, in some embodiments, an interface (e.g., interface 320 of
In some embodiments, the spacer 300 is integrally formed with the lid 200. For instance, in some embodiments, the spacer 300 and the lid 200 are formed during an additive manufacturing process (e.g., a three-dimensional printing process, an injection molding process, a vat photopolymerization process, etc.), allowing for the spacer 300 to the lid 200 to be formed as a single integrally formed component. In some embodiments, the integral forming of the spacer 300 and the lid 200 provides the interface 320 with a first material strength that is different from a second strength of the spacer 300 and/or the lid 200, such that a portion of the cap device 10 deforms in accordance with a provided force (e.g., a force required for disengaging the spacer 300 and the lid 200). In some embodiments, difference in strength between the lid 200, the spacer 300, the interface 320, or a combination thereof is provided through a difference in relative materials and/or a difference in physical design (e.g., a difference in material thickness, a deformity, etc.). For instance, in some embodiments, the first strength of the interface 320 is less than the second material strength of the second strength of the spacer 300 and/or the lid 200, allowing for a portion of the interface 320 to fracture under the provided force. In some embodiments, the first strength of the interface 320 is greater than the second material strength of the second strength of the spacer 300, allowing for a portion of the spacer to fracture under the provided force.
Referring briefly to
Referring to briefly to
In some embodiments, the exterior portion of the lid 200 includes a cylindrical portion of a third diameter (e.g., D3 of
Accordingly, in some embodiments, the spacer 300 is a cylindrical object of the third diameter D3 having a gap (e.g., gap 330 of
In some embodiments, the lid 200 and the spacer 300 engage through corresponding magnetic fields. For instance, in some embodiments, each of the spacer 300 and the lid 200 each include one or more magnets disposed on, or imbedded within, corresponding surfaces, such as an upper surface of the spacer 300 and a lower surface of the lid 200.
In some embodiments, the lid 200 and the body 100 each include a corresponding mating mechanism (e.g., a second mating mechanism) that allow the lid 200 and the body 100 to engage with each other (e.g., block 1108 of
For instance, referring briefly to
Furthermore, in some embodiments, the second mating mechanism 150 of the body 100 includes a first number of grooves 152 and the second mating mechanism 250 of the lid 200 includes a second number of protrusions. In some embodiments, the second number of the second mating mechanism 250 of the lid 200 is greater than or equal to the first number of grooves 152 of the second mating mechanism 150 of the body 100. However, the present disclosure is not limited thereto. For instance, in some embodiments, the second number of the second mating mechanism 250 of the lid 200 is less than the first number of grooves 152 of the second mating mechanism 150 of the body 100. In some embodiments, the first number of grooves 152 of the second mating mechanism 150 of the body 100 and the second number of the second mating mechanism 250 of the lid 200 are in a range of from 1 to 20, from 1 to 15, from 1 to 10, from 1 to 8, from 1 to 7, from 2 to 8, from 3 to 6, from 3 to 5 (e.g., 4). As such, the second mating mechanism provide great flexibility in orienting and engaging the lid 200 and the body 100 together.
In some embodiments, if the lid 200 and the body 100 are engaged with each other, the lid 200 and the body 100 are movably relative to each other with at least one degree of freedom. In some embodiments, the lid 200 and the body 100 are restricted to one degree of freedom if in an engaged state. Moreover, in some embodiments, the one degree of freedom is a translational degree of freedom, such as a translational degree of freedom parallel to the axis 160 of
For instance, in some embodiments, the engaging of the lid 200 and the body 100 allows for a relative movement between the lid 200 and the body 100 with the one translational degree of freedom (e.g., a translational degree of freedom parallel to the axis 160 of
In some embodiments, the body 100 further includes a gate (e.g., gate 500 of
Accordingly, the gate 500 is movable between a first position (e.g., a first position of gate 500 as illustrated in
The gate 500 in the second position occupies a second portion of the opening 110 that is less than the first portion. For instance, in some embodiments, the gate 500 rotates about a portion of the lower end portion of the opening 110 from the first state to the second state, such that the gate 500 no longer occupies the inlet area of the lower end portion of the opening 110. As such, the gate 500 assists the protrusion 210 of the lid 200 in disengaging the membrane 400 from the opening 110, providing improved dispensing of the compound 700.
In some embodiments, the gate 500 is internally disposed at the lower end portion of the opening 110 above the membrane 400 (e.g., as illustrated in
In some embodiments, a first end portion of the gate 500 (e.g., portion 510 of
In some embodiments, a lower end portion of the protrusion 210 further includes a wedge (e.g., wedge 230 of
In some embodiments, the cap device 10 includes a metal material, a plastic material, a rubber material, or a combination thereof. For instance, in some embodiments, the body 100 and the lid 200 of the cap device 10 includes a plastic material configured for medical and/or pharmaceutical applications. Moreover, in some embodiments, a portion of the upper end portion of the lid 200 and/or the skirt 120 of the body 100 includes a rubber material, providing an improved grip for the user of the cap device 10. In some embodiments, the spacer 300 includes an elastic material (e.g., rubber), allowing the spacer 300 to elastically deforms during transition between states (e.g., elastically deform to disengage from the lid 200).
Now that details of a cap device 10 for accommodating and dispensing a compound 700 into a container have been disclosed, details regarding a flow chart of processes and features for implementing a method 1100 of utilizing the cap device 10, in accordance with an embodiment of the present disclosure, are disclosed with reference to
Block 1102. Referring to block 1102 of
Block 1104. The method 1100 includes sealing a lower end portion of the opening 110 of the body 100. For instance, in some embodiments a membrane (e.g., membrane 400 of
Block 1106. Once the lower end portion of the opening 110 is sealed (e.g., the membrane 400 engages the lower end portion of the opening 110), either of the opening 110 or the hollow of the protrusion 210 is filled with a first dosage of the first compound 700-1.
In some embodiments, an internal surface of one of the opening or the hollow protrusion of the cap further includes one or more indicia (e.g., indicia 800 of
In some embodiments, the opening 110 and/or the protrusion 210 includes a first diameter at a lower end portion (e.g., D1 of
Furthermore, in some embodiments, depending on which portion of the cap device 10 receives the compound 700, the method 1110 conducts the engaging of block 1106 prior to the sealing of block 1104. For instance, in some embodiments, the protrusion 210 receives the compound 700 instead of the opening 110, allowing the sealing of the lower end portion of the opening 110 to be conducted after the disposing of the compound 700 into the protrusion 210 of the lid 200.
Block 1108. The lid 200 and the body 100 of the cap device 10 are engage by accommodating the protrusion 210 of the lid 200 within a portion of the opening 110 of the body 100. With the lid 200 and the body 100 engaged, the first compound 700-1 in accommodated with in the cap device 10. In this engaged state of the lid 200 and the body 100, the first compound 700 is prevented from escaping the device 10 unless, for instance, the lid 200 and the body 100 are disengaged or the cap device 10 is otherwise altered (e.g., disengaging the spacer 300 of the cap device 10, such as block 1312 of the method 1100 of
In some embodiments, the spacer 300 is coupled to the upper end portion of the lid 200 prior to engaging the lid 200 and the body 100 (e.g., prior to block 1308 of the method 1100 of
In some embodiments, the engaging of the lid 200 and the body 100 further includes coupling the spacer to the upper end portion of the lid. In some embodiments, the engaging of the lid 200 and the body 100 allows a relative movement between the lid and the body with one translational degree of freedom. In some embodiments, the engaging of the lid 200 and the body 100 allows a relative movement between the lid and the body with one translational degree of freedom.
In some embodiments, this state of the spacer 300 engaged with the cap device 10 restricts a relative movement between the lid 200 and the body 100 to one degree of freedom. In some embodiments, this restricted one degree of freedom is a translational degree of freedom parallel to a longitudinal axis of the cap device 10 (e.g., axis 160 of
In some embodiments, a first force is required for the engaging the lid 200 and the body 100 (e.g., a force required for conducting block 1108 of the method 1100), while a second force is required for piercing the seal of the membrane 400 by the depressing of the lid 200 (e.g., a force required for conducting block 1114 of the method 1100). In some embodiments, the first force is less than or equal to the second force. Since the second force required for piercing the seal of the membrane 400 is relatively small (e.g., easily applied by an user of the cap device 10), the lid 200 and the body 100 are easily disengage with minimal effort by the user of the cap device 10, providing reusability of the cap device 10.
Block 1110. A lower end portion of the body 100 and the container engage, such that the cap device 10 is coupled to the container. In some embodiments, the engagement between the body 100 and the container is facilitated through corresponding mating mechanisms (e.g., first mating mechanism 130 of the body 100). For instance, in some embodiments, engaging the body 100 and the container includes receiving an upper end portion of the container (e.g., a mouth) at an internal portion of the body 100, such as the skirt 120. In some embodiments, one or more protrusions (e.g., protrusions 140 of
Block 1112. The spacer 300 is disengaged from the upper end portion of the lid 200. In some embodiments, the spacer 300 includes a mechanism (e.g., mechanism 310 of
Block 1114. With the spacer 300 disengaged from the cap device 10, the lid 200 is allowed to depress further towards to the body 100. If a user applies a force on the lid 200, the protrusion 210 depresses towards the lower end portion of the opening, piercing the seal formed by the membrane 400. Accordingly, the dosage of the first compound 700-1 is free to escape the cap device 10 and dispense into the container.
In some embodiments, the protrusion 210 engages with the gate 500, which in turn engages and pierces the seal of the membrane 400. In some embodiments, the wedge 230 of the protrusion 210 engages with the gate 500, reducing a force the user must apply to pierce the seal of the membrane 400. For instance, in some embodiments, the second end portion 520 of the wedge 230 rotates about the first end portion 510, which is coupled to the lower end portion of the opening 110, amplifying a force applied from the protrusion 210 towards the membrane 400.
In some embodiments, the penetrating the membrane 400 punctures the membrane 400, reducing the structural integrity of the membrane 400. In some embodiments, the puncturing of the membrane 400 forms one or more through holes on the membrane 400, allowing the membrane 400 to remain engaged with the lower end portion of the body 100 while also permitting the dispensing of the compound 700 from the cap device 10 into the container. In some embodiments, the penetrating the membrane 400 removes, or decouples, at least a portion of the membrane 400 from the lower end portion of the body 100. For instance, in some embodiments, a first portion of the membrane 400 proximate to the first edge 232 of the wedge 230 disengages from the lower end portion of the opening 110, while a second portion of the membrane 400 proximate to the second edge 234 of the wedge 230 remains engaged with the lower end portion of the opening 110 during the depressing of the lid 200. As such, the membrane 400 remains partially engaged with the lower end portion of the body 100, allowing the compound 700 to dispense from the cap device 10 to the container without having the membrane 400 also dispense (e.g., fall into) the container).
Block 1116. In some embodiments, the method 1100 further includes decoupling the cap device 10 from the container upon dispensing the compound 700 into the container. In some embodiments, a period of time elapses prior to the decoupling of the cap device 10 from the container, allowing for the compound 700 and a solvent (including, for example, a consumable liquid) to completely react (e.g., completely dissolve the compound 700). The complete reaction can form a consumable solution.
In some embodiments, the container includes a consumable liquid (e.g., a solution including a solute compound 700 and a solvent of the container). As such, the decoupling of the cap device 10 from the container 10 further includes decoupling the body 100 and the lid 200 of the cap device 10. Accordingly, in some embodiments, the user decouples the lid 200 from the cap device 10 prior to decoupling the body 100 from the container. As such, prior to the decoupling of either of the body 100 from the container or the lid 200 from the body 100, the method 1100 further includes consuming the solution of the compound 700. For instance, in some embodiments, the upper end portion of the opening 110 forms a mouth for the user for the cap device 10 to utilizing while conducting the consumption of the solution.
Accordingly, in some embodiments, the method 1100 further includes repeating the sealing of the membrane 400 (e.g., block 1104 of
In some embodiments, the sealing the lower end portion of the opening 110 using the membrane 400 includes removing the pierced first membrane 400-1 from lower end portion of body 100. In some embodiments, the sealing the lower end portion of the body 100 of the repeating includes resealing the lower end portion of the opening of the body with the membrane, thereby reforming the pierced seal. Accordingly, the membrane 400 is reusable for more than one sealing and dispensing operation of the cap device 10. With the first membrane 400-1 disengaged from the cap device 10, a second membrane 400-2 different from the first membrane 400-1 is applied to the cap device 10, allowing for further disposal of a second compound 700-2 into the cap device 10 (e.g., repeating block 1106 of
In some embodiments, the repeating of a dispensing of a compound 700 omits the removing of the membrane 400. For instance, in some embodiments, the gate 500 is repositioned to the first position, which seals the lower end portion of the opening 110.
In some embodiments, the spacer 300 is integrally formed with the upper end portion of the lid 200. Accordingly, the method 11000 further includes decoupling both the body 100 from the container and the lid 200 from the body 100 (e.g., disengaging the components of the cap device 10). Further, in some embodiments, the method 1100 includes repeating the sealing of the membrane 400 (e.g., block 1104 of
All referenced cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
D120464 | Martin | May 1940 | S |
D250467 | O'Banion | Dec 1978 | S |
D258311 | Peterson | Feb 1981 | S |
D292673 | Woodruff | Nov 1987 | S |
4781484 | Goncalves | Nov 1988 | A |
4962852 | Affaitati | Oct 1990 | A |
D336042 | Bondanza | Jun 1993 | S |
5246142 | Dipalma | Sep 1993 | A |
5884759 | Gueret | Mar 1999 | A |
6003728 | Elliott | Dec 1999 | A |
D459653 | Marks | Jul 2002 | S |
6840373 | Gibler | Jan 2005 | B2 |
6921087 | Takahashi | Jul 2005 | B2 |
7546919 | Lee | Jun 2009 | B2 |
7568576 | Sweeney, Jr. | Aug 2009 | B2 |
D604608 | Lourenco | Nov 2009 | S |
7614496 | Dvorak | Nov 2009 | B2 |
7748550 | Cho | Jul 2010 | B2 |
7886899 | Frutin | Feb 2011 | B2 |
8215481 | Knickerbocker | Jul 2012 | B1 |
D666495 | Biesecker | Sep 2012 | S |
8403131 | Rovelli | Mar 2013 | B2 |
8408389 | Anderson | Apr 2013 | B1 |
8485353 | Lee | Jul 2013 | B2 |
D690596 | Logue | Oct 2013 | S |
8714808 | Yamanaka | May 2014 | B2 |
8833577 | Habibi-Naini | Sep 2014 | B2 |
8960424 | Anderson | Feb 2015 | B1 |
D729010 | Logel | May 2015 | S |
D734150 | Rigel | Jul 2015 | S |
9193517 | Fontana | Nov 2015 | B2 |
9242773 | Anderson | Jan 2016 | B1 |
9452870 | Anderson | Sep 2016 | B1 |
9545607 | Thompson | Jan 2017 | B1 |
D855461 | Wu | Aug 2019 | S |
D879551 | Byrd | Mar 2020 | S |
20020020636 | Bergamini | Feb 2002 | A1 |
20040020797 | Fontana | Feb 2004 | A1 |
20050161348 | Morini | Jul 2005 | A1 |
20050211579 | Makita | Sep 2005 | A1 |
20070289663 | Johns | Dec 2007 | A1 |
20080093326 | Cho | Apr 2008 | A1 |
20080171109 | Hsieh | Jul 2008 | A1 |
20080202950 | Anderson | Aug 2008 | A1 |
20080223741 | Nyambi | Sep 2008 | A1 |
20080290061 | Seelhofer | Nov 2008 | A1 |
20090065378 | Maas | Mar 2009 | A1 |
20090139882 | DeJonge | Jun 2009 | A1 |
20090261000 | Epp | Oct 2009 | A1 |
20100059394 | Fontana | Mar 2010 | A1 |
20120325697 | Cho | Dec 2012 | A1 |
20130092690 | Skakoon | Apr 2013 | A1 |
20140305818 | Lee | Oct 2014 | A1 |
20150217924 | Cho | Aug 2015 | A1 |
20150344204 | Anderson | Dec 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20210221571 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29706749 | Sep 2019 | US |
Child | 16712504 | US |