At least one example of the present invention relates generally to a container. More particularly, certain examples relate to a container or a closure system for a resealable container having a sanitary, enclosed dispensing portion, such that the dispensing portion remains protected from the environment during, for example, shipping and storage of the container, and may be protected from the environment during use by the consumer.
Beverages, foods, and other consumer goods come in a variety of containers for distribution and sale to consumers. In particular, conventional beverage cans having a stay-on-tab type closure are widely used because of their ease of manufacture, low manufacturing costs, and reliability. However, sanitary concerns exist with regard to the unprotected outside portion of the can that comes into contact with the contents while pouring from the beverage can, or comes directly into contact with the consumers while drinking from the beverage can. Additionally, some consumers have difficulty opening beverage cans, and once this beverage can has been opened, it cannot be resealed, or requires substantial effort to reseal, so that protection of the unprotected outside portion and storage after opening are not feasible.
Certain aspects and examples disclosed herein provide sanitary containers, and methods of making them.
In accordance with a first aspect, a container is provided comprising a container body and a closure system. The closure system comprises a fixed element and a movable closure element. The fixed element comprises a can end comprising a dispensing portion and a channel guide having a first end and a second end. The fixed element is secured to an end of the container body. The movable closure element comprises a top cover comprising a grip, a sealing portion residing within the container body and comprising a channel constructed and arranged to accept the channel guide, and a stem positioned within the channel and having a top end constructed and arranged to be mated with the top cover and a bottom end constructed and arranged to be mated with the sealing portion.
In accordance with this first aspect, at a first position the top cover covers the dispensing portion, the sealing portion is in contact with a bottom surface of the can end, and the stem is positioned at the first end of the channel guide.
In accordance with this first aspect, at a second position the top cover covers the dispensing portion and is rotated relative to the first position, the sealing portion is spaced a predetermined distance from the bottom surface of the can end, and the stem is positioned at the first end of the channel guide.
In accordance with this first aspect, at a third position the top cover exposes the dispensing portion, the sealing portion is spaced a predetermined distance from the bottom surface of the can end, and the stem is positioned at the second end of the channel guide.
In accordance with an additional aspect, a closure system for sealing a container constructed and arranged to be mated with a container body is provided comprising a fixed element and a movable closure element. The fixed element comprises a can end comprising a dispensing portion and a channel guide having a first end and a second end, the fixed element constructed and arranged to be secured to an end of the container body. The movable closure element comprises a top cover comprising a grip, a sealing portion comprising a channel constructed and arranged to accept the channel guide, and a stem residing within the channel and having a top end constructed and arranged to be mated with the top cover and a bottom end constructed and arranged to be mated with the sealing portion. In accordance with this additional aspect, as the top cover and stem are rotated, the sealing portion moves vertically along the stem, and as the top cover and stem are moved in a horizontal direction, the sealing portion moves in the horizontal direction.
In accordance with an additional aspect, a closure system for sealing a container constructed and arranged to be mated with a container body is disclosed. The closure system comprises a fixed element comprising a can end comprising a dispensing portion and a channel guide having a first end and a second end, the fixed element constructed and arranged to be secured to an end of the container body. The closure element also comprises a movable closure element comprising a top cover comprising a grip comprising a lever. The movable closure element also comprises a sealing portion comprising a channel constructed and arranged to accept the channel guide and a lever receiving portion constructed and arranged to accept the lever. In accordance with this aspect, as the lever of the top cover is lifted, the lever moves to allow the sealing portion to move vertically, and as the lever is moved in a horizontal direction the sealing portion moves in the horizontal direction.
In accordance with an additional aspect, a closure system for sealing a container is constructed and arranged to be mated with a container body. The closure system comprises a fixed element and a movable closure element. The fixed element comprises a can end comprising a dispensing portion and a channel guide having a first end and a second end. The fixed element is constructed and arranged to be secured to an end of the container body. The movable closure element comprises a top cover comprising a lever, and a sealing portion comprising a lever receiving portion. The lever receiving portion is constructed and arranged to accept the lever such that, as the lever is lifted, the sealing portion moves in a downward direction away from the can end. The sealing portion is also constructed and arranged such that, as the top cover is moved horizontally from the first end of the channel guide to the second end of the channel guide the dispensing portion is exposed.
In accordance with an additional aspect, a closure system for sealing a container constructed and arranged to be mated with a container body. The closure system comprises a fixed element and a movable closure element. The fixed element comprises a can end comprising a dispensing portion and a channel guide. The fixed element is constructed and arranged to be secured to an end of the container body. The movable closure comprises a top cover comprising a grip, and a sealing portion. The sealing portion is constructed and arranged to operatively interact with the top cover, such that as the top cover is engaged, the sealing portion moves in a vertical direction, and as the top cover is moved in a horizontal direction along the channel guide, the sealing portion moves in the horizontal direction.
Other advantages, novel features and objects of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
Certain illustrative examples are described below with reference to the accompanying figures in which:
Certain features or components of the illustrative containers and devices shown in the figures may have been enlarged, distorted or otherwise shown in a non-conventional manner relative to other features or components to facilitate a better understanding of the novel containers and devices disclosed herein. It will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure, that the containers and devices disclosed herein can be used in any orientation relative to gravity and suitable orientations will be readily selected by the person of ordinary skill in the art, given the benefit of this disclosure. References made to beverage containers herein is not intended to limit the disclosure to beverage containers, but instead refers to containers that may be used to hold various contents, including consumable and non-consumable goods.
Certain examples of the devices and methods disclosed herein will be recognized by the person of ordinary skill in the art, given the benefit of this disclosure to provide sanitary, cost-effective containers. In particular, beverage containers are provided that have a sanitary cover, are easier to open than conventional cans, and can be repeatedly and securely resealed. The beverage container of certain examples disclosed herein will prevent the dispensing portion of the beverage container from exposure to the environment and ensure a safe and contaminant-free product. The current manufacturing process for beverage cans may be adapted to include the present invention, with reduced, minimal or no additional cost.
Conventional beverage containers, such as aluminum cans, are manufactured by well-known processes. In one process, aluminum cans are made from an aluminum coiled sheet which is fed through a cupping press that cuts discs and forms them into cup-like containers. These cups drop from the press onto a conveyor, and are fed into an ironing press where successive rings redraw and iron the cup, reducing the sidewall thickness, and achieving a full length can. The tops of the can bodies are then trimmed to eliminate rough edges and ensure height uniformity. The can bodies are then cleaned and dried. Subsequently, the can bodies are labeled and coated with a clear protective layer of varnish. The cans are then baked, treated with a coating, and re-baked. The top portion of each can body is narrowed to form a neck with an outward flange at the top edge. The bottom portions are domed to obtain the strength required to withstand internal pressure if a carbonated liquid will be added to the can. After testing for pin-holes and defects, the can bodies are placed on pallets and shipped to a beverage supplier.
The lids of conventional aluminum cans, typically referred to as “can ends,” are made by stamping shells from an aluminum coiled sheet. The shells are coated with a sealant, and subsequently a rivet is placed in each can end. On those cans using a stay-on-tab type closure, the process further includes inserting a separate piece of metal as the tab under the rivet to secure it in place. The edges of the can ends generally have a curved flange. The can ends are also scored to define the opening of the can end in the finished product. The can ends are then shipped to the beverage supplier, along with the can bodies.
At the beverage supplier, a filling machine is used to pour the beverage into the can body. The process is completed after filling when the can end is added, and secured to the can body by forming a double seam with the can body. A double seam is formed by interlocking edges of the two components, the outward top edge of the can body and the curved flange at the edge of the can end, curling the can end flange around the can body edge so that the can end flange is partially rolled up and under the can body edge to form a partial seam, and crimping and flattening the partial seam against the can body to form a hermetic seal.
Most beverage cans have a stay-on-tab type closure such as those disclosed in U.S. Pat. Nos. 3,967,752 and 3,967,753 to Cudzik, and described above. However, there are many aspects of the conventional stay-on-tab closure that make it undesirable. The stay-on-tab closure does not provide for a sanitary drinking environment because the outer surface of the can and the top of the can, which comprises the stay-on-tab closure, comes into contact with the environment during storage, shipping, distribution, display, handling, and ultimately, use by the consumer. When the beverage is poured directly from the can through the opening formed from the stay-on-tab closure, the beverage comes in contact with the top and surface of the can, making for a potentially unsanitary drinking environment. Additionally, if a consumer drinks the beverage from the can directly, both the beverage and the mouth of the consumer come into contact with the surface and top of the can, also making for an unsanitary drinking environment. Additionally, the stay-on-tab type closure does not allow for reclosing the beverage container.
The present invention provides a beverage container that may be manufactured by commercially available processes and machinery with minimal retrofitting, low material and manufacturing costs, ease of stacking during shipping and storage, increased sanitary conditions of the dispensing portion, reliability and ease of opening, closing, and resealing by consumers, pourability, drinkability, recyclability, and decreased likelihood of spilling the contents of the container. These advantages of the present invention overcome the noted deficiencies of the conventional stay-on-tab type closure beverage containers.
The present invention also provides a resealable closure system to use with a beverage container that allows for locking of the system in a secure, closed, sealed position, as well as locking the device in various secure open positions. Additionally, after the beverage container is initially opened, the user may recover and protect the dispensing portion of the container to prevent contaminants from residing in the dispensing portion area.
As used herein, the term “mate” or “mating” may describe any manner of connecting or joining two or more components together. The term “mate” or “mating” may describe any mechanical, thermal, or chemical process that connect or join two or more components together. In the examples disclosed herein, the term “mate” or “mating” may mean welding, soldering, molding, adhering, crimping, folding, double seaming, clamping, snapping, interlocking, fastening or otherwise connecting two components. For example, two or more components of the container may be welded, soldered, molded, adhered, crimped, folded, double seamed, clamped, snapped, or interlocked together. In certain examples, two or more components may be mated by being fastened together with the assistance of another component, thereby forming a rigid or flexible, hinge connection. “Mating” may also mean connecting or joining at least two components having compatible threaded surfaces. The mating may be permanent or temporary.
In accordance with certain examples, a container is disclosed. The container may be used to hold various contents including, but not limited to consumable goods, and may have the ability to reliably seal and reseal the goods within the container. The goods may be in the form of at least one of a solid, liquid or gas. In certain examples, the contents may be a food, beverage, for example, a carbonated beverage, or other consumable. In other examples, the contents may be other than a food or beverage, but may still require sanitary conditions and protection from contamination while dispensing and/or storing.
In accordance with certain examples, a closure system comprising a fixed element and a movable closure system is disclosed. The movable closure element may comprise a top cover and a sealing portion. A component of the movable closure element, such as the top cover, sealing portion, or another component of the movable closure element, may secure other portions of the movable closure element to each other. This component may allow the top cover and sealing portion to operatively interact with one another, directly or indirectly. The top cover and the sealing portion may operatively interact with one another to allow movement of the sealing portion together with the top cover. The top cover and the sealing portion may operatively interact with one another to allow movement of the sealing portion in a direction that is the same as the direction in which the top cover is moved, for example, in a horizontal direction along a channel guide formed in the fixed element. Additionally, the top cover and the sealing portion may operatively interact with one another to allow movement of the sealing portion in a direction that is not the same direction as the direction in which the top cover is moved. For example, engaging the top cover by, for example, turning lifting, or otherwise moving at least a portion of the top cover, may allow the sealing portion to move in a vertical direction.
In accordance with certain examples, a container may comprise a container body and a closure system. The closure system may comprise a fixed element and a movable closure element. In certain examples, the fixed element may comprise a can end comprising a dispensing portion, and a channel guide having a first end and a second end. The fixed element may be secured to an end of the container body. The beverage container may additionally comprise a movable closure element comprising a top cover, a sealing portion and a stem. The top cover may comprise a grip. The sealing portion may reside within the container body and comprise a channel constructed and arranged to accept the channel guide of the fixed element. The stem may be positioned within the channel and have a top end constructed and arranged to be mated with the top cover and a bottom end constructed and arranged to be mated with the sealing portion. In certain examples, the stem may be formed as a portion of the top cover and/or the sealing portion, and thus may not be a separate component of the closure system.
In accordance with certain examples, at a first position, the top cover covers the dispensing portion, the sealing portion is in contact with a bottom surface of the can end, and the stem is positioned at the first end of the channel guide. At a second position, the top cover covers the dispensing portion and is rotated relative to the first position, the sealing portion is spaced a predetermined distance from the bottom surface of the can end, and the stem is positioned at the first end of the channel guide. At a third position the top cover exposes the dispensing portion, the sealing portion is spaced a predetermined distance from the bottom surface of the can end, and the stem is positioned at the second end of the channel guide.
In accordance with certain examples, a closure system for sealing a container may be constructed and arranged to be mated with a container body. The closure system may comprise a fixed element comprising a can end comprising a dispensing portion and a channel guide having a first end and a second end. The fixed element may be constructed and arranged to be secured to an end of the container body. The closure system may also comprise a movable closure element. The movable closure element may comprise a top cover comprising a grip and a sealing portion comprising a channel constructed and arranged to accept the channel guide. The movable closure element may also comprise a stem residing within the channel and having a top end constructed and arranged to be mated with the top cover and a bottom end constructed and arranged to be mated with the sealing portion. The closure system may be constructed and arranged such that as the top cover and stem are rotated the sealing portion moves vertically along the stem, and as the top cover and stem are moved in a horizontal direction the sealing portion moves in a horizontal direction.
In accordance with certain examples, a closure system for sealing a container may be constructed and arranged to be mated with a container body. The closure system may comprise a fixed element comprising a can end comprising a dispensing portion and a channel guide having a first end and a second end. The fixed element may be constructed and arranged to be secured to an end of the container body. The closure element may also comprise a movable closure element comprising a top cover comprising a grip comprising a lever. The lever may comprise a ring. The movable closure element may also comprise a sealing portion comprising a channel constructed and arranged to accept the channel guide and a lever receiving portion constructed and arranged to accept the lever. In accordance with certain examples, as the lever of the top cover is lifted, the lever may move to allow the sealing portion to move vertically, and as the lever is moved in a horizontal direction the sealing portion may move in the horizontal direction.
In accordance with certain examples, a closure system for sealing a container is constructed and arranged to be mated with a container body. The closure system comprises a fixed element and a movable closure element. The fixed element comprises a can end comprising a dispensing portion and a channel guide having a first end and a second end. The fixed element is constructed and arranged to be secured to an end of the container body. The movable closure element comprises a top cover comprising a lever, and a sealing portion comprising a lever receiving portion. The lever receiving portion is constructed and arranged to accept the lever such that, as the lever is lifted, the sealing portion moves in a downward direction away from the can end. The sealing portion is also constructed and arranged such that, as the top cover is moved horizontally from the first end of the channel guide to the second end of the channel guide the dispensing portion is exposed.
In accordance with an additional aspect, a closure system for sealing a container constructed and arranged to be mated with a container body. The closure system comprises a fixed element and a movable closure element. The fixed element comprises a can end comprising a dispensing portion and a channel guide. The fixed element is constructed and arranged to be secured to an end of the container body. The movable closure comprises a top cover comprising a grip, and a sealing portion. The sealing portion is constructed and arranged to operatively interact with the top cover, such that as the top cover is engaged, the sealing portion moves in a vertical direction, and as the top cover is moved in a horizontal direction along the channel guide, the sealing portion moves in the horizontal direction.
In accordance with certain examples, the beverage container may be configured to have a container body defining at least a portion of the container that holds the contents of the container. The container body may have an opening for filling and/or dispensing, for example, that may be positioned at a first end portion thereof. The container body may include a plurality of such openings, each with similar or different functions. For example, the container body may include a second opening positioned at a second end portion thereof that may be opposite an opening positioned at a first end portion. The container body may be made from any suitable material for holding, storing, dispensing and/or cooling or heating its contents in a cost-effective manner, ensuring the integrity of the contents, without the risk of contamination. The material may include, but not be limited to, metals and plastics. For example, the container body may be made of glass, steel, tin, aluminum, or plastic materials such as polyethylene terephthalate (PET), high-density polyethylene, low-density polyethylene, polysulfone, polyvinyl chloride, polypropylene, polystyrene, polycarbonate, and the like. The container body may be manufactured as a single component or from multiple components. Container bodies manufactured from a single component may include a seam or joint to provide a structural seal; alternatively, such bodies may be seamless. Container bodies manufactured from multiple components may be assembled by mating or otherwise joining sub-components in various ways. The container body may be formed of a variety of functional and/or ornamental shapes. It will be within the ability of the person of ordinary skill in the art, given the benefit of the disclosure, to select or to design suitable shapes, sizes and materials for construction of the container body disclosed herein. The container body may also be configured to be filled or refilled.
The container may comprise a component to enclose and/or seal the contents of the beverage container. The component may be used to close a container body and to ensure the integrity of the contents of the container, without risk of contamination. In certain examples, the component may be constructed and arranged to attach to the container body. The component may be a base plate. The base plate may be attached opposite an end of the container body that may be used for dispensing the contents of the container. The base plate may be constructed of materials compatible with the container body, such that the base plate may be mated with the container body. In some examples, the base plate may be flat. In certain other examples, the base plate may be domed to protrude into the container to alleviate pressure within the container if the contents are sealed under pressure or, for example, are carbonated. Attachment of the base plate to the container body may occur by temporarily or permanently mating the base plate and the container body.
The container may comprise a closure system. The closure system may be constructed and arranged, in conjunction with the container body, to enclose the various contents inside the container. The closure system may be constructed and arranged to seal the contents inside the container to ensure the integrity of the contents, without the risk of contamination prior to, during, and after a consumer has used the container. In certain examples, the closer system may be constructed and arranged to hermetically seal the contents inside the container. The closure system may be configured to provide an opening so that the contents of the container may be dispensed, and to provide a sanitary surface for dispensing and/or consuming the contents. The closure system may be configured to be resealable to allow a user to open and close the container as desired, to control the size of the opening as desired, and to lock and unlock the closure system in a specific position to assist the user in dispensing a desired flow of contents out of the container, or to allow the user to contain the contents within the container.
The closure system may be formed of various functional and/or ornamental shapes and sizes to be compatible with and to mate with the container body. The closure system may be made, for example, of any material to provide for sealing of the beverage container, to ensure the integrity of the contents, without the risk of contamination, and for holding, storing, and/or cooling or heating the contents of the beverage container. The closure system may be made of the same material as the container body or a different material. It will be within the ability of the person of ordinary skill in the art, given the benefit of the disclosure, to select or to design suitable shapes, sizes and materials for construction of the closure system disclosed herein.
The closure system may comprise one or more components that enclose and seal the contents inside the container. The closure system may also comprise one or more components that allow the contents within the container to be dispensed. Closure systems that comprise more than one component may comprise a first component constructed of one material and a second component constructed of a different, compatible material so that the first component and the second component may be mated. Either of the first component or the second component and any other additional components of the closure system may be the same or different material from the container body, so long as there exists a seal between at least one component of the closure system and the container body. The seal may be formed in various manners, including, but not limited to, a mechanical seal, a thermal seal, a chemical seal, or the like. The components of the closure system may be pre-assembled prior to securing the closure system to the container body, or may be attached consecutively, either to the container body, to the components of the closure system, or both. For example, components of the closure system may be attached to each other and one or more of the components of the closure system may be attached to the container body. Each component of the closure system may be permanently or temporarily attached to one or more other components of the closure system, the container body, or both. The closure system may be secured to the container body by various methods. The securing may be accomplished by mating.
The closure system may comprise a component that provides the seal between the closure system and the container body to ensure the integrity of the contents of the container, without risk of contamination, in conjunction with the other components of the closure system. The component may be configured to provide a sanitary opening for allowing contents to exit or enter the container. The component may provide a sanitary opening for direct consumption, for example, drinking, from the container. The component may provide for stabilization of other components of the closure system, for example to prevent movement of one component relative to another. The component may be secured permanently to the container body and may be constructed and arranged to accept overflow or spillage from the container. The component may be a fixed element that may comprise one or more sub-components. A fixed element that comprises more than one sub-component may be preassembled and attached to the container body as a collective fixed element, or may be attached to the container body in consecutive order. The fixed element may be secured to the container body by mating. Each component of the fixed element may be made of the same or different material from each other and from the container body. The fixed element may provide a surface for indicia for labeling the contents of the container, marketing, to facilitate opening of the container, or the like. The fixed element may provide a surface that is easily printed on using conventional printing methods.
As noted above, the fixed element may comprise one or more sub-components. For example, the fixed element may comprise a can end that may be one or more components. The can end may comprise a sub-component that provides an opening for allowing contents to exit or enter the container. The opening may be constructed and arranged to provide a sanitary area for direct consumption from the container. The sub-component may be a dispensing portion constructed and arranged to be compatible with and to be mated with one or more components or sub-components of the closure system or to the container body. The dispensing portion may be of various functional and/or ornamental shapes and sizes suitable for dispensing various fluids and solids. The dispensing portion may be constructed and arranged to deliver contents directly to a consumer (i.e., by mouth) or to deliver contents to another container, for example, a cup or a bowl in the case of beverages or foods. In the case of non-consumable goods, the dispensing portion may be constructed and arranged to deliver contents to another container, for example, a tray in the case of dispensing paint from a paint can. The dispensing portion may be constructed and arranged to be suitable for dispensing the contents in a reliable, accurate, and easy manner. In certain examples, the dispensing portion may be constructed and arranged to provide ease in drinking and/or pouring directly from the container, and the dimensions of the dispensing portion may be selected and adjusted by the consumer. The dispensing portion may also allow passage of implements easily through this portion, with clear access and in a non-tortuous path. For example the dispensing portion may allow passage of a funnel, straw, or the like to assist with addition or dispensing the contents of the container. It will be within the ability of the person of ordinary skill in the art, given the benefit of the disclosure, to select or to design suitable shapes, sizes and materials for construction of the dispensing portion disclosed herein.
The can end may be constructed and arranged to cooperate with other components of the closure system. The can end may provide a sub-component that allows cooperation with other components of the closure system. The sub-component may allow other components of the closure system to interact with it to accomplish adequate sealing of the container. The sub-component may be constructed and arranged to mate with other components of the closure system to ensure that each component does or does not move relative to a third component. In one embodiment, the sub-component may be an aligner, guide, or connector to control the rate of adjustment of this sub-component to another component. The sub-component may also allow other components of the closure system to fit through this sub-component, allowing various components of the closure system to mate, for example, during assembly of the closure system. The sub-component may be a channel guide. The channel guide may be constructed and arranged to mate with other portions of the closure system, such as portions of the movable closure element. The channel guide may have a first end that participates in a sealing or opening process of the container, and a second end that participates in another sealing or opening process of the container. In some examples, the channel guide may comprise an edge or lip that mates or cooperates with one or more other components of the system. In other examples, the channel guide may be constructed to allow communication between the inside and the outside of the container. The channel guide and dispensing portion may be constructed and arranged such that each opening provides structural integrity to the can end and the beverage container. In certain examples, this may be accomplished by having the channel guide and dispensing portion be combined into one opening. In certain examples, the channel guide and dispensing portion are constructed as at least two openings. This may allow less metal to be removed from the can end, and strengthen it, as compared to another construction that may include one opening comprising the channel guide and dispensing portion.
The can end comprising more than one sub-component may be preassembled and attached to the container body as a collective can end. Alternatively, it may be attached to the container body in consecutive order, along with other components of the closure system. The sub-components of the can end may be both secured to the container body, or one sub-component of the can end may be attached to another sub-component of the can end, which then may be secured to the container body. The securing may be accomplished by mating. Each component of the can may be made of the same or different material from each other and from the other components of the closure system, and the container body.
In a two-component can end, the first component may have a dispensing portion and the second component may have a dispensing portion. The dispensing portion of the first component may be aligned with the dispensing portion of the second component. The first component and the second component may be made of the same or different, compatible materials. For example, the first and second component may be made entirely of aluminum or a polymeric material. In the alternative, the first component may be made of aluminum, while the second component may be made of a polymeric material. The dispensing portions of the first and second component may be the same or different size and shape, so long as they provide a clear path to the contents of the container.
The first component of the can end may comprise the channel guide. The channel guide may be positioned in the first component so that it resides in a portion of the dispensing portion of the second component of the can end. The first and second component may both comprise a portion of the channel guide, so that mating of the first and second components of the can end create the channel guide. In certain examples the first component may be referred to as a can cover, and the second component may be referred to as a can end.
The sub-components of the can end may be secured to each other in various ways. For example, the first component may be attached to the second component by way of an adhesive. For example, if the container will be used for foodstuffs or liquids, a Food and Drug Administration approved adhesive may be used. These components may also be secured to one another by mating complementary parts to one another. For example, mating may occur by matching up openings within the first component with raised portions, such as pins or pegs in the second component which are then flattened to secure the components to each other. The first component and second component may have edges that may be crimped to one another, for example, in the case of aluminum components. Snap hooks may alternatively be used to snap the first component into the second component. One or more tabs may be used to engage and hold the first and second components of the can end in place. The one or more tabs that are engaged to hold the first and second components in place may be held by being forced up against the inside one of the first and second component. Of course, those skilled in the art may recognize other means for securing the first and second components which may be used to assemble this portion of the closure system.
The closure system may comprise a component to secure the fixed element to the container body, and to retain the contents within the container to ensure the integrity of the contents. The component may be constructed and arranged to secure the fixed element to the container body. In certain examples, the component may be made as one piece as a part of the can end. As noted above, beverage containers of the present invention may be manufactured by commercially available processes with minimal retrofitting. The fixed element may comprise a component that may be mated and secured to the container body by conventional beverage can manufacturing processes. For example, the component may be mated with the container body to form a seam. The seam may be a double seam that provides a hermetic seal. In other examples, the component may be mated with the container body by snapping latches in one component or sub-component into the grooves of another component or sub-component. In certain examples, the component may be a rim. The rim may be constructed and arranged to secure the fixed element to the container body. The rim may be made of the same or different material as any one of the components of the container and/or closure system. The rim may have a perimeter that is the same or different shape as the perimeter of the top portion of the container body. For example, the rim may have a circular outer circumference, and may have a diameter the same as or larger than the diameter of the top portion of the container body. As noted above, the rim may be made as part of the can end. In certain other examples, the rim may be made as a separate component. The rim may comprise at least one opening. The opening may be constructed and arranged of a shape, size and material to ultimately allow the contents of the container to be dispensed smoothly and efficiently from the container. The opening may allow for a can end to fit within the opening. The opening may be a pre-determined shape, for example, the opening may be in the shape of a circle that is centered with respect to the outer perimeter of the rim. In other examples, the opening may be off-set with respect to the outer perimeter of the rim. The shape of the opening may be the same or different shape as the outer perimeter of the rim. The shape of the opening of the rim may be the same or different shape as the outer perimeter of the spout.
The closure system may comprise a component that provides a closure to the beverage container. The component may ensure the integrity of the contents and enclose the contents of the container, without risk of contamination, during holding, storing, shipping, dispensing, and/or cooling or heating the contents by, for example, the manufacturer, the distributor and/or the consumer. Additionally, the component may protect the dispensing portion of the container from the environment, thereby ensuring sanitary conditions until a user opens the container. The component may also protect the portion of the container from the environment after opening, as desired by the user. The component may work together with the fixed element to provide for a secure closure that ensures the integrity of the contents of the container, without the risk of contamination. The component may be a movable closure element that may seal off the contents of the container from the environment. The movable closure element may seal off the contents of the container initially, and, subsequent to opening, may be used again to seal off contents and further protect the dispensing portion from the environment. The movable closure element may be constructed and arranged to mate with one or more components of the fixed element, the container body or both. In certain examples, the movable closure element may be constructed and arranged to be mated with the dispensing portion and/or the bottom surface of the can end. The movable closure element may be constructed and arranged to be used in a locked or unlocked position. The movable closure element may be of various functional and/or ornamental shapes and sizes to be mated with the other components of the closure system and/or container body, and may be constructed of a material suitable for such purposes. The movable closure element may be sized and shaped to facilitate opening and closing of the container. The movable closure element may provide a surface for indicia for labeling the contents of the container, for marketing purposes, to facilitate opening of the container, or the like. At least a portion of the movable closure element may provide a surface that is easily printed on using conventional printing methods.
The movable closure element may comprise one or more components that may be permanently or temporarily attached to each other. The movable closure element may comprise a component to cover the dispensing portion or an area of the fixed element larger than the dispensing portion, and retain the contents inside the container. In certain examples, the component may reveal the entire dispensing portion, or a section thereof. The component may be in contact with the fixed element at one or more points. The component may have the ability to move from a first position to one or more other positions to, for example, cover or reveal the dispensing portion. Moving may involve, for example, one or more of sliding, twisting, shifting, turning, pulling, pushing, transferring, removing, engaging or otherwise modifying the position of one or more components of the closure system, for example, the top cover. The component may reside outside the container and may serve as a top cover for the container. The top cover may be of various functional and/or ornamental shapes and sizes to provide protection to the dispensing portion from the environment and to retain contents within the container.
The top cover may comprise one or more sub-components to assist a consumer in moving the top cover. For example, this sub-component may assist the consumer in turning or twisting the top cover to a position, or assist the consumer in shifting or sliding the top cover to another position. The sub-component may be a grip which may include, for example, one or more of any of an edge, ridge, rim, notch, groove, cavity, depression, indentation, pitted or rough surface, ring or lever that is on, in or attached to the top cover suitable for assisting a consumer in moving the top cover as desired. The grip may be manufactured as part of the top cover, for example, in a molding process, or may be manufactured separately, to be mated with the top cover during manufacturing of the closure system. In certain examples, the grip may be a portion of the top cover that may be manipulated by the user into a position that may then allow for moving the top cover, for example, turning or shifting the top cover. The manipulation may be performed by flipping a portion of the top cover that is engaged with a hinge, which allows the portion of the top cover to move from a horizontal position to a vertical position, thereby forming a sort of handle, lever, or the like. The top cover may comprise a portion that may be mated with other portions of the movable closure element, which may, together, assist in the opening and closing of the container, and covering and revealing the dispensing portion using the closure system. The top cover may also comprise a portion that provides a seal between the top cover and the top surface of the fixed element. In certain examples, this portion may be a seal, such as a gasket or o-ring.
The top cover or fixed element may also comprise one or more components that allow a portion of the top cover to be secured to limit movement of the portion of the top cover. The one or more components may secure, lock, or fasten a portion of the top cover to another portion of the top cover. For example, a component of the top cover or fixed element may be constructed and arranged to mate with a portion of the top cover, such as a lever, to secure the lever in a position such that the lever is fixed in place or is secured in a resting position. A component of the top cover may be a groove that may mate with a snap hook on the lever to secure the lever in a resting position on the top cover. In another example a component of the top cover may be constructed and arranged to mate with another component of the top cover, to at least in part secure the top cover to the fixed element.
The movable closure element may also comprise a component to provide a seal and retain the contents in the container in conjunction with other components of the movable closure element. This component may provide a secure, reliable, leak-proof closure for the container. The component may also allow for dispensing of the contents from the container. The component may be a sealing portion comprising one or more components. The sealing portion may be of various functional and/or ornamental shapes and sizes to provide a seal for retaining contents inside the container. The sealing portion may also be of various functional and/or ornamental shapes and sizes to provide for a release of pressure from within the container, for example, if the contents within the container comprise a carbonated beverage. The sealing portion may reside within the container and have contact with the bottom surface of the can end. In certain examples, the sealing portion may reside within the container but not necessarily be in contact with the bottom surface of the can end. The sealing portion may provide for a seal for retaining contents inside the container, which may be enhanced by the internal pressure of the contents; however, the internal pressure is not required to provide the seal. The sealing portion may be constructed of materials that are compatible with the other components of the beverage container, and may also be constructed of materials that are compatible with the contents of the container. For example, the sealing portion may be constructed of a material that is inert or non-reactive with the contents of the container. In certain examples, the sealing portion may be made of polypropylene. Suitable shapes, sizes and materials for the sealing portion will be readily selected by a person of ordinary skill in the art, given the benefit of the disclosure. Other means may be used alternatively or in conjunction with the above described mechanical elements to secure the fixed element to the container body.
The sealing portion may comprise a sub-component that may assist with obtaining and maintaining the integrity of the seal of the container, initially, and after opening and during use by the consumer. The sub-component may enhance the sealing capability of the sealing portion. The sub-component may be manufactured separately from the sealing portion, or may be manufactured as part of the sealing portion. In the former circumstance, the sub-component may be mated with the sealing portion by various mating techniques discussed above, including the use of an adhesive, or through construction and arrangement of the sub-component and the sealing portion. The sealing portion may be constructed and arranged to accept the sub-component to ensure that the two components mate properly. For example, the sealing portion may contain a groove or other structure to accept the sub-component into the sealing portion. In the latter circumstance, the sub-component may be molded directly to the sealing portion through conventional molding processes. The sub-component may be an o-ring or gasket used to ensure a proper seal between the sealing portion and the bottom surface of the can end. The o-ring or gasket may be constructed of any suitable material to create such a seal, and that may be compatible with the other components of the closure system, such as the sealing portion and can end, as well as the contents of the container. For example, the o-ring may be made of a polymeric material that has a suitable flexibility to create the desired seal. The sealing portion and the sub-component may be made of the same material, as one piece, for example, an o-ring or gasket like material that may function as the sealing portion and as a seal.
The sealing portion may comprise one or more sub-components that may allow for release of pressure from within the container, for example, if the contents within the container comprise a carbonated beverage. The one or more sub-components may interact with other components or sub-components of the closure system to allow for release of pressure from within the container. The one or more sub-components may also participate in the sealing capability of the sealing portion. The sub-component may be manufactured separately from the sealing portion, or may be manufactured as part of the sealing portion. The one or more components can be of any suitable size or shape to accomplish release of pressure from within the container.
The one or more sub-components may form an opening in the sealing portion. The opening may be of any size or shape suitable for allowing any pressure from within the container to be released in a pre-determined desirable manner. The opening may extend through the entire thickness of the sealing portion. The diameter or width of the opening may be the same throughout the thickness of the sealing portion. In some examples, the diameter or width of the opening may decrease or increase throughout the thickness of the sealing portion, in a gradual or step-wise manner.
The sealing portion may also comprise an additional sub-component of the sealing portion that may allow for release of pressure from within the container, for example, if the contents within the container comprise a carbonated beverage. The sub-component may interact with other components or sub-components of the closure system to allow for release of pressure from within the container. The sub-component may also participate in the sealing capability of the sealing portion. The sub-component may be manufactured separately from the sealing portion, or may be manufactured as part of the sealing portion. For example, the sub-component may be manufactured as part of the sealing portion sub-component that may assist with obtaining and maintaining the integrity of the seal of the container, initially, and after opening and during use by the consumer, for example, the o-ring or gasket. The sub-component may be an over-mold that is constructed and arranged to be positioned within the opening of the sealing portion. The over-mold may comprise an opening that may align with the opening of the sealing portion to allow for release of pressure from within the container. The opening in the over-mold may also align with a portion of the top cover to allow for release of pressure from within the container. For example, as the lever of the top cover is lifted to a predetermined angle, the opening in the over-mold may align with an opening of the lever to allow for the release of pressure from within the container. A predetermined angle as discussed herein refers to an angle as measured between the bottom surface of a grip, for example a lever, and the horizontal plane extending across the fixed element or can end.
The over-mold may be mated with the sealing portion by various mating techniques discussed above, including the use of an adhesive, chemical or thermal bond, or through construction and arrangement of the sub-component and the sealing portion, such that an appropriate fit is achieved and an additional mating technique is not required. In certain examples, the pressure within the container may secure the over-mold in place within the opening of the sealing portion and up against another component of the closure system, for example the lever of the top cover. This may ensure a secure seal of the container prior to it being opened using the closure system. The over-mold may be molded directly to the sealing portion through conventional molding processes. The over-mold may be constructed of any suitable material to participate in adequate sealing of the closure system and release of pressure from within the container, and that may be compatible with the other components of the closure system, such as the sealing portion, top cover, can end, as well as the contents of the container. For example, the over-mold may be made of a polymeric material that has a suitable flexibility to create the desired seal. In certain examples, the over-mold may be made of a thermoplastic elastomer (TPE). If, for example the sealing portion, often referred to in the molding industry as a substrate, is made of polypropylene, and the over-mold is made of TPE, a thermal bond can be initiated between these two components by applying heat. The sealing portion and the one or more sub-components may be made of the same material, as one piece, for example, an o-ring or gasket-like material that may function as the sealing portion, a seal, and as a suitable opening for releasing pressure from within the container.
The sealing portion may comprise a sub-component that may allow for movement of the sealing portion in a given direction. The sub-component may also interact with other components of the closure system, such as the fixed element to prevent movement of the sealing portion in a different given direction. The sub-component may interact with other components of the closure system, such as the fixed element, can end, or channel guide to cover the dispensing portion, or to expose the dispensing portion. The sub-component may further be constructed and arranged to mate with or accept a component or sub-component of the fixed element. In one embodiment, the sub-component may be an aligner, guide, or connector to control the rate of adjustment of this sub-component to another component. For example, the sub-component may be a channel that may mate with a component of the fixed element, for example, the can end. The channel may mate with at least a portion of the channel guide of the can end. Alternatively, at least a portion of the channel may mate with the channel guide. The channel and channel guide may mate by various mechanisms. For example, the channel and channel guide may mate such that it allows for movement of the sealing portion relative to the channel guide. The movement of the sealing portion relative to the channel guide may be in the vertical direction, i.e., upwards or downwards. In certain embodiments, at least a portion of the sealing portion may move in a horizontal direction, parallel to the can end, without making contact with the can end during movement.
The channel or channel guide may contain a section that allows the sealing portion to move relative to each other, but that permits movement of the channel up to a certain predetermined distance. For example, the section of the channel or channel guide may be constructed and arranged to prevent the sealing portion from moving any further in a given direction. The section of the channel or channel guide may prevent the sealing portion from becoming separated from the other components of the closure system. The section may also prevent the sealing portion from falling into the container. These desired effects may be accomplished by mating or associating certain sub-components of at least one of the top cover, sealing portion, fixed element, or other components of the closure system with the channel or channel guide. In certain examples, at least one of the top cover or sealing portion may be associated with the channel guide such that at least a portion of the top cover or sealing portion may reside within the channel guide. The association may allow the top cover, for example, to glide along at least a portion of the channel guide, while restricting the movement of the top cover in other directions to maintain alignment of the top cover with the channel guide. The section of the channel or channel guide may comprise a device that may secure the sealing portion to the channel guide or the stem at a predetermined distance from the bottom surface of the can end. The section may comprise one or more snap-hooks to maintain the connection between the sealing portion and the other components of the closure system, such as the channel guide or the stem.
The movable closure element may also comprise a component that secures other portions of the movable closure element to each other. The component may allow for movement of the sealing portion together with the top cover. The component may allow for the movement of the sealing portion in a direction that is the same as the direction in which the top cover is moved. Alternatively, the component may allow for the movement of the sealing portion in a direction that is not the same as the direction in which the top cover is moved. The component may mate with the top cover and the sealing portion by the same or different mating methods. The component may be a stem, for example, that may be mated with the top cover and the sealing portion. The stem may be constructed and arranged to mate with the top cover by one mating method, and with the sealing portion by a different mating method. The stem may have a top end constructed and arranged to be mated with the top cover and a bottom end constructed and arranged to be mated with the sealing portion. The top end of the stem may mate with the top cover by extending through the dispensing portion and/or the channel guide of the can end. The mating of the top cover to the top end of the stem may ensure that movement of the stem occurs with movement of the top cover.
The stem may be mated with the top cover by way of various methods. In certain examples, the stem and top cover may be mated through the use of an adhesive. In other examples, snap hooks on either the top cover or the top portion of the stem may provide the mechanism for mating these two components. Yet in other examples, well-known techniques such as spin welding may be used to mate these two components, for example, if these components are constructed from polymeric materials. Mating these two components may include the use of a cross pin which would slide through holes in the top cover and top portion of the stem, to keep these two components in place. Other ways of mating involve crimping the two components to each other, using a rivet or otherwise.
The stem may be positioned within the channel of the sealing portion and may be constructed and arranged to mate with the sealing portion. The bottom end of the stem may be constructed and arranged to mate with a portion of the sealing portion in communication with the channel. The portion of the sealing portion may be constructed and arranged to accept and mate with the bottom end of the stem. The mating may be such that movement of the stem may cause movement of the sealing portion. In certain examples, a movement of the stem (for example in a horizontal direction) may cause movement of the sealing portion in a vertical direction, for example upward or downward. In one embodiment, rotation of the stem in one direction may cause movement of the sealing portion in a downward direction. Because the channel guide of the fixed element may be mated with the channel of the sealing portion, the sealing portion will not rotate with the stem, but instead will only move in a vertical direction. The bottom end of the stem may comprise a threaded surface that mates with a compatible threaded surface of the sealing portion. The bottom end of the stem may comprise a threaded surface having a female thread which is compatible with the threaded surface of the sealing portion having a male thread. Alternatively, the bottom end of the stem may comprise a threaded surface having a male thread which is compatible with the threaded surface of the sealing portion having a female thread. The stem may be of various functional and/or ornamental shapes and sizes to secure the desired components of the closure system together. It will be within the ability of the person of ordinary skill in the art, given the benefit of the disclosure, to select or to design suitable shapes, sizes and materials of the stem disclosed herein.
The component of the movable closure element that secures other portions of the movable closure element to each other may be a sub-component of at least one of the top cover and the sealing portion. As described above, this component may allow for movement of the sealing portion together with the top cover, for example in a horizontal or vertical direction. The component may allow for the movement of the sealing portion in a direction that is the same as the direction in which the top cover is moved. In addition, the component may allow for the movement of the sealing portion in a direction that is not the same direction as the direction in which the top cover is moved. For example, engaging the top cover can cause the sealing portion to move in a vertical direction. The component may be a lever receiving portion that may be attached to the sealing portion, or may be manufactured as a part of the sealing portion. The lever receiving portion may be constructed and arranged to accept another component of the movable closure element such as the top cover. By allowing the lever receiving portion to interact with the top cover, the closure system may suitably operate to allow for various opened and closed positions of the closure system. For example, the lever receiving portion may be constructed and arranged to accept the lever of the top cover. By moving the lever, which may operatively interact with the lever receiving portion, a user may operate the closure system to expose or cover the dispensing portion as desired.
In some embodiments, aspects of the lever receiving portion may comprise a structure to secure a portion of the top cover, for example a portion of the lever, to allow the lever to pivot relative to other portions of the top cover or sealing portion. This aspect of the lever receiving portion may receive a portion of the lever, such as a pin, allowing the components of the movable closure element to mate or cooperate with one another. The lever receiving portion and the lever can be designed to be any suitable shape, size and material such that these components may communicate with one another to allow the top cover and sealing portion to operatively interact and move in one or more desired directions.
In certain embodiments, the lever receiving portion may form an opening that may accept the pin of the lever to allow for movement of the sealing portion during operation of the closure system. The shape of the opening may be the same or different from the shape of the cross-section of the pin. In some examples, the shape of the opening may complement the shape of the cross-section of the pin to push or pull the sealing portion in a vertical direction, for example in a downward direction.
In this embodiment, in the closed position, the opening and the cross-section of the pin are constructed and arranged such that the pin contacts a portion of the lever receiving portion on a surface of the opening and also contacts the over-mold, such that there is no communication between the environment within and outside of the container. In this way, these components function as a valve for the closure system, wherein the movement of the pin relative to the lever receiving portion and the over-mold may allow for communication between the interior and exterior environment of the container. As the pin is rotated, by moving a grip, for example a lever, in a given direction, an opening in the pin may become aligned with the opening in the over-mold, thereby opening the valve, so as to initiate a release of any pressure within the container. Once the pressure has been released, the shape of the opening and the cross-section of the pin allow the pin to communicate with the over-mold, which initiates movement of the sealing portion in a downward direction. As the pin continues to rotate, the shape of the opening and the cross-section of the pin may prevent the grip, for example, the lever, from being moved further in the given direction. These actions may be reversed by moving the grip, for example, the lever, in a direction opposite the given direction, pulling up the sealing portion and blocking the opening of the over-mold using the pin, thereby closing the valve.
The movable closure element may also comprise a component that may provide an indication that the container has been at least partially opened or otherwise tampered with or altered. The component may provide an indication that the original seal from the manufacturer has been broken such that a user may assess the safety of the contents of the container, or whether the contents of the container have been altered. The indication may be any indication that notifies the user that the manufacturing seal has been at least partially broken, for example by movement of the component, or change in color of the component. The component can be a sub-component of the top cover, sealing portion, fixed element, or a combination thereof. For example, the sub-component can be a portion of the top cover, such that when a portion of the top cover or another portion of the closure system is manipulated in some way, the sub-component may indicate that the container has been at least partially opened, tampered with or altered. In certain examples, the sub-component may be a member of the top cover that is in communication with the lever. As the lever is lifted, the member may move from its original position, thereby indicating that the container has been at least partially opened or otherwise tampered with or altered.
To facilitate stacking of the containers for more convenient and cost-effective shipping and storing, the top of the container comprising a closure system may be constructed and arranged to accept the bottom of another container body, or the base plate attached to another container body. For example, the top cover of the closure system may reside below the top edge of the fixed element which mates with the container body such that the top cover does not interfere in the stacking of multiple containers on top of one another. In other examples, a side of the container body may be constructed and arranged to accept a side of another container body to facilitate stacking of the containers.
A container body may be provided of various functional and/or ornamental shapes and sizes suitable for holding, storing, handling, and/or cooling or heating the contents of the beverage container. Conventional manufacturing processes as described above are used for producing beverage can bodies may be used for providing a container body. The closure system may be disposed on the container body by placing, dropping, depositing, or the like. This may be accomplished through automated processes or manually. Securing may occur to ensure the integrity of the contents of the container through mating of the container body to the closure system. Mating may occur between the container body and the fixed element. Mating may also occur between various components and sub-components of the closure system and container body. The securing may also occur using conventional methods of manufacturing beverage cans, for example, by forming a double seam. A flange of the fixed element may curl around a first edge of the container body to form a partial seam. The partial seam may be crimped and flattened for form a hermetic seal.
To assemble the beverage container, by automatic processes or manually, all or part of the closure element may be pre-assembled to be mated with the container body or inserted through the container body and may be compatible with conventional manufacturing processes of an aluminum can. Alternatively, portions of the fixed element may be mated to each other and the container body without being pre-assembled.
The operation of the assembled closure system of a container is described below. In one embodiment, at a first position, the top cover covers the dispensing portion and may also cover a portion of the can end. At this first position, the sealing portion is in contact with a bottom surface of the can end in a locked position, and the stem is positioned at the first end of the channel guide. The stem may be mated to the top cover by any various means, including those described above such that as the top cover is moved, the stem moves in the same direction.
The user may use one or more of the grips of the top cover to move the top cover in a desired direction, for example, to a second position. As the top cover is moved in a desired direction, due to the mating of the top cover and the top end of the stem, the stem is moved in the same desired direction. Because the bottom end of the stem is mated with the sealing portion, this causes the sealing portion to move. For example, the bottom end of the stem may have a threaded surface that is compatible with the threaded surface of a portion of the sealing portion, which, upon movement of the top cover would thereby move the sealing portion along the threaded surface. For example, movement of the top cover would move the sealing portion along the threaded surface in a vertical downward direction away from the bottom surface of the can end. The closure system may be constructed and arranged to prevent the sealing portion from moving further away than a pre-determined distance from the bottom surface of the can end to an unlocked position at the first end of the channel guide.
The channel may contain a section that allows the sealing portion to move relative to the channel guide, but that permits movement of the channel up to a certain predetermined distance. For example, the section of the channel may be constructed and arranged to prevent the sealing portion from moving any further in a given direction. The section of the channel may prevent the sealing portion from becoming separated from the other components of the closure system. The section may also prevent the sealing portion from falling into the container. The section may comprise a device that may secure the sealing portion to the channel guide or the stem at a predetermined distance from the bottom surface of the can end. The section may comprise one or more snap-hooks to maintain the connection between the sealing portion and the other components of the closure system, such as the channel guide or the stem.
The user may again use one or more of the grips of the top cover to move the top cover in a desired direction, for example, to a third position. As the top cover is moved in a desired direction, due to the mating of the top cover and the top end of the stem, the stem is moved in the same desired direction. Because the bottom end of the stem is mated with the sealing portion, this in turn causes the sealing portion to move. At the third position the top cover exposes the dispensing portion, the sealing portion is spaced a predetermined distance from the bottom surface of the can end, and the stem is positioned at the second end of the channel guide.
The user may use one or more of the grips of the top cover to move the top cover in a desired direction, for example, to a fourth position. As the top cover is moved in a desired direction, due to the mating of the top cover and the top end of the stem, the stem is moved in the same desired direction. This desired direction may be opposite the direction that the top cover and top end of the screw are moved when transitioning from the first position to the second position. In moving to this fourth position, the sealing portion comes into contact with the bottom surface of the can end in a locked position, and the stem is positioned at the second end of the channel guide. In certain examples, a sub-component of the sealing portion comes into contact with the bottom surface of the can end. The sub-component may be an o-ring or gasket.
From the second position, the user may use one or more of the grips of the top cover to move the top cover in a desired direction, for example, to a fifth position. As the top cover is moved in a desired direction, due to the mating of the top cover and the top end of the stem, the stem is moved in the same desired direction. Because the bottom end of the stem is mated with the sealing portion, this in turn causes the sealing portion to move. At a fifth position the top cover exposes at least a portion of the dispensing portion, the sealing portion is spaced a predetermined distance from the bottom surface of the can end, and the stem is positioned at a predetermined distance from the first end of the channel guide.
From the fifth position, the user may use one or more of the grips of the top cover to move the top cover in a desired direction, for example, to a sixth position. As the top cover is moved in a desired direction, due to the mating of the top cover and the top end of the stem, the stem is moved in the same desired direction. This desired direction may be opposite the direction that the top cover and top end of the screw are moved in when transitioning from the first position to the second position. In moving to this sixth position, the sealing portion comes into contact with the bottom surface of the can end in a locked position, and the stem is positioned at a predetermined distance from the first end of the channel guide. In certain examples, a sub-component of the sealing portion comes into contact with the bottom surface of the can end. The sub-component may be an o-ring or gasket.
In another embodiment, at a first position, the top cover covers the dispensing portion and may also cover a portion of the can end. At this first position, the lever of the top cover is resting on the top cover, and the sealing portion is in contact with a bottom surface of the can end in a locked position.
The user may use the lever of the top cover to move the top cover in a desired direction, for example, to a second position. As the lever is moved in a desired direction, for example, as the lever is lifted relative to the first position, due to the mating of the top cover and the sealing portion, the sealing portion is spaced a predetermined distance from the bottom surface of the can end. If the contents of the container are sealed under pressure, the pressure is released from the container during transition from the first position to the second position.
The user may again use the lever of the top cover to move the top cover in a desired direction, for example, to a third position. As the top cover is moved in a desired direction, the sealing portion is also moved in the same desired direction. At the third position the top cover exposes the dispensing portion and the sealing portion is spaced a predetermined distance from the bottom surface of the can end.
The user may use the lever of the top cover to move the top cover in a desired direction, for example, to a fourth position. As the lever is moved in a desired direction, for example, as the lever is lowered, the sealing portion comes into contact with the bottom surface of the can end in a locked position. In certain examples, a sub-component of the sealing portion comes into contact with the bottom surface of the can end. The sub-component may be an o-ring or gasket.
From the second position, the user may use the lever of the top cover to move the top cover in a desired direction, for example, to a fifth position. As the top cover is moved in a desired direction, due to the mating of the top cover and the sealing portion, the sealing portion also is moved in a desired direction. At a fifth position the top cover exposes at least a portion of the dispensing portion, and the sealing portion is spaced a predetermined distance from the bottom surface of the can end.
As the lever is moved in a desired direction, for example, as the lever is lowered, the sealing portion comes into contact with the bottom surface of the can end in a locked position. In certain examples, a sub-component of the sealing portion comes into contact with the bottom surface of the can end. The sub-component may be an o-ring or gasket.
In another embodiment, a closure system is configured to seal a container constructed and arranged to be mated with a container body. In a particular embodiment, the closure system includes a can end having a dispensing portion and a channel guide formed therein. The channel guide includes a first end and a second end. The can end is constructed and arranged to be secured to an end of the container body. The closure system further includes a movable closure element having a top cover and a sealing portion. The top cover has a lever and the sealing portion has a lever receiving portion, which is constructed and arranged to accept the lever. The arrangement is such that, as the lever is lifted, the sealing portion moves in a downward direction away from the can end, and as the top cover is moved horizontally from the first end of the channel guide to the second end of the channel guide the dispensing portion is exposed.
The top cover is movable from first, second, third, fourth, fifth and sixth positions. In the first position, the top cover covers the dispensing portion and the lever of the top cover rests on the top cover, with the sealing portion being in contact with a bottom surface of the can end. In the second position, the top cover covers the dispensing portion and the lever is lifted relative to the first position, with the sealing portion being spaced a predetermined distance from the bottom surface of the can end. In the third position, the top cover and the sealing portion expose the dispensing portion, with the sealing portion being spaced a predetermined distance from the bottom surface of the can end. In the fourth position, the top cover and the sealing portion expose the dispensing portion, with the lever being lowered to rest on the top cover and the sealing portion being in contact with the bottom surface of the can end. In the fifth position, the top cover and the sealing portion expose at least a portion of the dispensing portion, with the lever of the top cover being lifted relative to the fourth position and the sealing portion being spaced a predetermined distance from the bottom surface of the can end. In the sixth position, the top cover and sealing portion expose at least a portion of the dispensing portion, with the lever of the top cover being lowered relative to the fifth position and the sealing portion being in contact with the bottom surface of the can end.
In certain embodiments, the can end is made of a material that is compatible with a material of at least one of the top cover and the sealing portion. Specifically, at least one of the top cover and the sealing portion is made of a polymeric material. The total weight of the polymeric material may be less than or equal to 10 grams.
In other embodiments, the lever may be constructed and arranged to operatively interact with the lever receiving portion. The top cover may be constructed and arranged to at least partially secure the top cover to the fixed element, and to mate with the lever. The top cover may be constructed and arranged to mate with another portion of the top cover and to at least partially secure the top cover to the fixed element. The top cover may be constructed and arranged to maintain alignment of the top cover with the channel guide. The arrangement is such that contents within the container are pressurized and the sealing portion is constructed and arranged to release pressure from within the container. The lever is configured to operatively interact with the sealing portion to release pressure from within the container. Specifically, pressure is released from the container when the lever is lifted from a resting position on the top cover to a predetermined angle. The arrangement is such that as the lever is lifted, a portion of the lever becomes aligned with the sealing portion to release pressure from within the container.
In a further embodiment, a closure system is configured to seal a container constructed and arranged to be mated with a container body. In a particular embodiment, the closure system includes a can end having a dispensing portion and a channel guide. The can end is constructed and arranged to be secured to an end of the container body. The closure system further includes a movable closure element having a top cover and a sealing portion. In one embodiment, the top cover includes a grip and the sealing portion operatively interacts with the top cover. The arrangement is such that as the top cover is engaged, the sealing portion moves in a vertical direction, and as the top cover is moved in a horizontal direction along the channel guide, the sealing portion moves in the horizontal direction.
Referring now to the figures, in one embodiment,
As illustrated in the exploded views of
Closure system 102 of
In one embodiment,
In another embodiment,
In another embodiment,
In another embodiment, snap hooks may be used to mate the components of the two-component fixed element. It will be within the ability of the person of ordinary skill in the art, given the benefit of the disclosure, to select or to design suitable shapes, sizes and materials for mating the components of the fixed element together.
In yet another embodiment as shown in
Once stem 136, top cover 118 and fixed element 104 are assembled, sealing portion 120 may be attached as shown in
Upon first use of a container comprising closure system 102, closure element 102 is located at a first position as shown in
By releasing sealing portion 120 from the bottom surface of fixed element 104, the user may now slide top cover 118 from first end 107 of channel guide 116 to second end 109 of channel guide 116 or anywhere in between such as a predetermined distance from first end 107 of channel guide 116. By moving top cover 118 to a predetermined distance from first end 107 of channel guide 116 or to second end 109 of channel guide 116, dispensing portion 114 of fixed element 104 is revealed partially as shown in
In another embodiment,
The exploded view of
In another embodiment, closure system 102′ is illustrated in
In another embodiment, closure system 1002 is illustrated in
As shown in
Also shown in
As shown in
In an additional embodiment
To assemble the closure system of certain embodiments described above, lever receiving portion 1098 of sealing portion 1020 is mated with lever 1094 of top cover 1018 by way of pin 1033. A first end 1035 of pin 1033 of lever 1094 is inserted through opening 1003 in lever receiving portion 1098. Subsequently, open prong 1099 of lever 1094 having opening 1047 is mated with first end 1035 of pin 1033. The channel guide of can end 1008 is then aligned with lever 1094 such that it is allowed to pass through the channel guide. In certain examples, the channel guide of can end 1008 is aligned at a position which is approximately 90 degrees from its' final positioning within closure system 1002. Can end 1008 resides on sealing portion 1020. Lever 1094 of the partially assembled closure system is then inserted through the remaining portion of top cover 1018. The remaining portion of top cover 1018 is then lowered, and arms 1021 of top cover 1018 are also pivoted such that the ends 1035 of pin 1033 of lever 1094 are mated with openings 1031 of arms 1021. Once top cover 1018 is lowered to a predetermined distance from can end 1008, for example 0.02 inches from can end 1008, and arms 1021 are at a predetermined angle from can end 1008, for example 5 degrees from can end 1008, can end 1008 can be rotated 90 degrees allowing portions of top cover 1018, including arms 1021 and hooks 1029 to snap into place and be secured can end 1008. Top cover 1021 also comprises projections 1043 which align within the channel guide of can end 1008 and assist in ensuring proper alignment of top cover 1018 with the channel guide of the can end.
Another embodiment of the disclosure is directed to a closure system for sealing a container constructed to be mated with a container body. Referring to
Specifically, with reference to
The top cover 1116, in the shown embodiment, includes a body 1120 and a separate lever 1122 that is configured to be pivotably secured to the body 1120. The lever 1122 includes a bar element 1124. A pair of notches each indicated at 1126 are formed in the body 1120 of the top cover 1116. The arrangement is such that the lever 1122 is capable of pivoting with respect to the top cover 1116, the purpose of which will be described in greater detail below.
The sealing portion 1118 includes a lever receiving portion, which in the shown embodiment is represented by three fingers 1128, 1130 and 1132 that extend upwardly from the sealing portion 1118. The fingers 1128, 1130 and 1132 are configured to secure the sealing portion 1118 to the top cover 1116, which will be described in greater detail below with reference to
The arrangement is such that when the lever 1122 is lifted, which will be described below, the fingers 1128, 1130, 1132 accept a portion 1136 of the lever to move the sealing portion 1118 with respect to the can end 1102. In this position, the top cover 1116 is capable of being moved horizontally from the first end 1112 to the second end 1112 of the channel guide 1110 to expose the dispensing portion 1108. The particular movement of the closure element 1104 will be described in greater detail below with reference to
And finally,
Turning now to
Referring to
Referring to
Specifically, with reference to
The arrangement is such that the portion 1136 of the lever 1122 is designed to push down on the surfaces 1142 of the fingers 1128, 1130 and 1132. When the lever 1122 is swiveled toward an open (pivoted) position, the portion 1136 applies a downward force on the surface 1142 of the middle finger 1132 to move the valve 1144 from the valve seat 1146. Once the surfaces 1142 of the fingers 1128, 1130 and 1132 are level with one another, the portion 1136 moves the sealing portion 1118 downwards.
The assembly of the closure system 1100 is as follows. Referring to
Next, the sealing element 1118 is secured to the top cover 1116 by inserting the fingers 1128, 1130 and 1132 up through the channel guide 1110. This is illustrated in
During operation, in a first position, the top cover 1116 covers the dispensing portion 1108, the lever 1122 of the top cover is resting on the top cover, and the sealing portion 1118 is in contact with the bottom surface 1138 of the can end 1102. In a second position, the top cover 1116 covers the dispensing portion 1108, the lever 1122 is lifted relative to the first position, and the sealing portion 1118 is spaced a distance from the bottom surface 1138 of the can end 1102. In this position, the movement of the sealing portion 1118 from the can end 1102 releases pressure from within the container. In a particular embodiment, a portion of the lever 1122 may be aligned with the sealing portion 1118 to release pressure from within the container. In a third position, the top cover 1116 and the sealing portion 1118 expose the dispensing portion 1108, and the sealing portion is spaced a distance from the bottom surface 1138 of the can end 1102. In a fourth position, the top cover 1116 and the sealing portion 1118 expose the dispensing portion 1108, the lever 1122 is lowered to rest on the top cover, and the sealing portion is in contact with the bottom surface 1138 of the can end 1102. In this position, a person is able to drink from the container.
In a fifth position, the top cover 1116 and the sealing portion 1118 expose at least a portion of the dispensing portion 1108, the lever 1122 of the top cover is lifted relative to the fourth position, and the sealing portion is spaced predetermined distance from the bottom surface 1138 of the can end 1102. In a sixth position, the top cover 1116 and the sealing portion 1118 expose at least a portion of the dispensing portion 1108, the lever 1122 of the top cover is lowered relative to the fifth position, and the sealing portion is in contact with the bottom surface 1138 of the can end 1102. In this position, the container is vented.
In certain embodiments, the end can 1102 (otherwise referred to as the fixed element) is made of a material that is compatible with a material of at least one of the top cover 1116 and the sealing portion 1118. In a particular embodiment, at least one of the top cover 1116 and the sealing portion 1118 is made of a polymeric material, with a total weight of the polymeric material being less than or equal to 10 grams. In another embodiment, the top cover 1116 may be configured to indicate whether the closure system 1100 has been opened.
Any of the arrangements described above may be used for beverages, foods, other consumable goods, or non-consumable goods. Additionally, as described above, containers may be made from any material known to those skilled in the art, depending on the use and function of the part or component. For example, container bodies and base plates may be made from aluminum materials used in the conventional manufacturing of can bodies. The fixed element, top cover, and sealing portion, may be formed from common molding and extrusion processes to create reproducible tolerances. The movable closure elements may be formed from polypropylene, while the can cover and stem may be manufactured from polyethylene terephthalate. Alternatively, the can end may be manufactured from aluminum materials used in the conventional manufacturing of can bodies. The gasket may be made of silicon, rubber, plastic, or the like. In certain examples, one or more components of the closure system may be formed from one or more polymeric materials. Typically, the polymeric material is a recyclable material that is compatible with other components of the closure system and with the contents of the container. The total weight of the polymeric material used in the closure system may be less than a predetermined amount such as a standard maximum weight based on industry standards, or recommended or mandated by governmental guidelines. Preferably, the total weight of the polymeric material used in the closure system is less than 10 grams, less than 8 grams, less than 6.5 grams, less than 5 grams, less than 3.75 grams, or less than 3.2 grams.
Although the containers and methods of making them have been described above in terms of certain examples and embodiments, various alterations, modifications, substitutions, additions and improvements will be readily apparent to the person of ordinary skill in the art, given the benefit of the disclosure. Such alterations, modifications, substitutions, additions and improvements are intended to be within the scope and spirit of the containers disclosed here. It is also intended that the indefinite articles “a” and “an,” as used above and in the appended claims, mean one or more of the articles which they modify, and that the terms “include,” “including” and “having” are interchangeable with the open ended term “comprising.” Only the transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to the claims.
Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for the use of the ordinal term) to distinguish the claim elements.
Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems and techniques of the invention are used. Those skilled in the art should also recognize, or be able to ascertain, using no more than routine experimentation, equivalents to the specific examples of the invention. It is therefore to be understood that the examples described herein are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described.
This application is a continuation of U.S. patent application Ser. No. 12/626,306, filed Nov. 25, 2009, titled CONTAINER, which is a continuation-in-part of U.S. patent application Ser. No. 12/324,386, filed Nov. 26, 2008, titled CONTAINER, each of which are incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2600086 | Vastano | Jun 1952 | A |
2880899 | Bramming | Apr 1959 | A |
2963187 | Bramming | Dec 1960 | A |
3017047 | Payson et al. | Jan 1962 | A |
3086675 | Clark, Jr. | Apr 1963 | A |
3158279 | Callegari | Nov 1964 | A |
3399810 | Burne | Sep 1968 | A |
3412892 | Waksman et al. | Nov 1968 | A |
3578198 | Blechman | May 1971 | A |
3662944 | Joosten, Sr. | May 1972 | A |
3727787 | Gregory | Apr 1973 | A |
3967752 | Cudzik | Jul 1976 | A |
3967753 | Cudzik | Jul 1976 | A |
3979025 | Friedrich et al. | Sep 1976 | A |
3982656 | Kusmierski et al. | Sep 1976 | A |
4057167 | Lee | Nov 1977 | A |
4127212 | Waterbury | Nov 1978 | A |
4136797 | Potts | Jan 1979 | A |
4183443 | DeParales et al. | Jan 1980 | A |
4262815 | Klein | Apr 1981 | A |
4269321 | Ichinose et al. | May 1981 | A |
D261364 | Smyth | Oct 1981 | S |
4309921 | Miller | Jan 1982 | A |
4319692 | Gundlach | Mar 1982 | A |
4333582 | Bloeck et al. | Jun 1982 | A |
4370190 | Ichinose et al. | Jan 1983 | A |
4410102 | Lutzker | Oct 1983 | A |
4429804 | Pease | Feb 1984 | A |
4431111 | Prohaska | Feb 1984 | A |
4449042 | Hampson et al. | May 1984 | A |
4465203 | Lambert | Aug 1984 | A |
D278888 | Plumb | May 1985 | S |
4546905 | Nandagiri et al. | Oct 1985 | A |
4560081 | Adams | Dec 1985 | A |
4564116 | Prohaska | Jan 1986 | A |
4579257 | Brandlein | Apr 1986 | A |
4585140 | Lambert et al. | Apr 1986 | A |
4600111 | Brown | Jul 1986 | A |
4609123 | Poncy | Sep 1986 | A |
4681238 | Sanchez | Jul 1987 | A |
4700856 | Campbell et al. | Oct 1987 | A |
4717037 | van der Meulen | Jan 1988 | A |
4720022 | Gomes | Jan 1988 | A |
4723684 | Lambert et al. | Feb 1988 | A |
4746032 | Huang | May 1988 | A |
4749100 | Eberhart | Jun 1988 | A |
4796774 | Nabinger | Jan 1989 | A |
4804103 | Goldberg | Feb 1989 | A |
4883192 | Krugman | Nov 1989 | A |
4893725 | Ball et al. | Jan 1990 | A |
4899902 | DeMars | Feb 1990 | A |
4909407 | Lambert et al. | Mar 1990 | A |
4911323 | Arfert et al. | Mar 1990 | A |
4917258 | Boyd et al. | Apr 1990 | A |
4928844 | LaBarge | May 1990 | A |
4930654 | Thibeault et al. | Jun 1990 | A |
4930655 | Wells | Jun 1990 | A |
4930658 | McEldowney | Jun 1990 | A |
4932555 | La Barge | Jun 1990 | A |
4936494 | Weidman | Jun 1990 | A |
4957216 | LaBarge | Sep 1990 | A |
4967622 | Phillips | Nov 1990 | A |
4982862 | La Barge | Jan 1991 | A |
4991732 | La Barge et al. | Feb 1991 | A |
5005717 | Oilar | Apr 1991 | A |
5035343 | Morton | Jul 1991 | A |
5062542 | Morton | Nov 1991 | A |
5071019 | Sizemore | Dec 1991 | A |
5121851 | Lyon et al. | Jun 1992 | A |
5139163 | Diaz | Aug 1992 | A |
5143248 | Sawatsky | Sep 1992 | A |
5148937 | Huard | Sep 1992 | A |
5176278 | Quarberg | Jan 1993 | A |
5186348 | Steiner | Feb 1993 | A |
5199597 | Gladish | Apr 1993 | A |
5273176 | Diaz | Dec 1993 | A |
D345673 | Dark | Apr 1994 | S |
5299604 | Pierce | Apr 1994 | A |
D354438 | Miller | Jan 1995 | S |
5402904 | Close | Apr 1995 | A |
5439103 | Howes | Aug 1995 | A |
5451271 | Yoshida et al. | Sep 1995 | A |
5462189 | Pierce | Oct 1995 | A |
5467888 | Brandstrom et al. | Nov 1995 | A |
D366832 | Lo | Feb 1996 | S |
5547275 | Lillelund et al. | Aug 1996 | A |
5555993 | Borkowski et al. | Sep 1996 | A |
5562205 | Diaz | Oct 1996 | A |
5609277 | McDonald | Mar 1997 | A |
D379065 | Dotson | May 1997 | S |
D379148 | Robbins, III et al. | May 1997 | S |
D379434 | Robbins, III et al. | May 1997 | S |
5632417 | Robbins, III et al. | May 1997 | A |
D380679 | Schreiber | Jul 1997 | S |
5671875 | Robbins, III et al. | Sep 1997 | A |
5680952 | Chasteen | Oct 1997 | A |
5690246 | Anderson et al. | Nov 1997 | A |
5704240 | Jordan | Jan 1998 | A |
5713235 | Diekhoff | Feb 1998 | A |
5718352 | Diekhoff et al. | Feb 1998 | A |
5720408 | Schmid et al. | Feb 1998 | A |
5722561 | Biondich et al. | Mar 1998 | A |
5755198 | Grob et al. | May 1998 | A |
5755354 | Lang | May 1998 | A |
5778723 | Diekhoff | Jul 1998 | A |
5785198 | Credle, Jr. | Jul 1998 | A |
5785199 | Woidtke | Jul 1998 | A |
5791503 | Lyons | Aug 1998 | A |
5791528 | Robbins, III et al. | Aug 1998 | A |
5797522 | Evans et al. | Aug 1998 | A |
5813561 | Chang et al. | Sep 1998 | A |
5816427 | Beckertgis | Oct 1998 | A |
5816428 | Plester | Oct 1998 | A |
5822843 | Diekhoff et al. | Oct 1998 | A |
5845800 | Shaw et al. | Dec 1998 | A |
5850944 | Robbins, III et al. | Dec 1998 | A |
5865036 | Anthony | Feb 1999 | A |
5894965 | Robbins, III et al. | Apr 1999 | A |
D410388 | Fisher et al. | Jun 1999 | S |
5911331 | Boller | Jun 1999 | A |
5934497 | Chang et al. | Aug 1999 | A |
5944238 | Stark | Aug 1999 | A |
5946930 | Anthony | Sep 1999 | A |
5947324 | Palinchak | Sep 1999 | A |
5971231 | Samz et al. | Oct 1999 | A |
5984127 | Fenton | Nov 1999 | A |
5993935 | Rasmussen et al. | Nov 1999 | A |
D417583 | Demore | Dec 1999 | S |
6010026 | Diekhoff et al. | Jan 2000 | A |
6010028 | Jordan et al. | Jan 2000 | A |
6015062 | Bachmann et al. | Jan 2000 | A |
6041982 | Cautereels et al. | Mar 2000 | A |
6079588 | Khafizov | Jun 2000 | A |
6082944 | Bachmann et al. | Jul 2000 | A |
6098830 | Jamieson | Aug 2000 | A |
6102242 | Jansen | Aug 2000 | A |
6106757 | Ohlsson et al. | Aug 2000 | A |
6155452 | Laurent | Dec 2000 | A |
6158608 | Schlattl | Dec 2000 | A |
6164503 | Forsyth et al. | Dec 2000 | A |
D436538 | Lang | Jan 2001 | S |
6170283 | Anthony | Jan 2001 | B1 |
6193094 | Diamond et al. | Feb 2001 | B1 |
6206222 | Cudzik | Mar 2001 | B1 |
6206223 | Wicker | Mar 2001 | B1 |
6247608 | Chang et al. | Jun 2001 | B1 |
6250507 | Ekkert | Jun 2001 | B1 |
6250517 | Samz et al. | Jun 2001 | B1 |
D446722 | Morrow | Aug 2001 | S |
D448296 | Bried et al. | Sep 2001 | S |
6286703 | Munro | Sep 2001 | B1 |
D448668 | Baerenwald et al. | Oct 2001 | S |
D448669 | Carducci et al. | Oct 2001 | S |
6308870 | Samz et al. | Oct 2001 | B2 |
D450584 | Schmit et al. | Nov 2001 | S |
D450586 | Kick | Nov 2001 | S |
6311865 | Laurent | Nov 2001 | B1 |
6338418 | Derose | Jan 2002 | B1 |
6341720 | Schmit et al. | Jan 2002 | B1 |
D453892 | Lindsay et al. | Feb 2002 | S |
6347720 | Schley | Feb 2002 | B1 |
6354458 | Policappelli | Mar 2002 | B1 |
RE37634 | Hickman et al. | Apr 2002 | E |
D456713 | Bried et al. | May 2002 | S |
6409033 | Wilhite et al. | Jun 2002 | B1 |
D462613 | Bried et al. | Sep 2002 | S |
6443323 | DeRose | Sep 2002 | B1 |
6450359 | Chang et al. | Sep 2002 | B1 |
D464567 | Baerenwald et al. | Oct 2002 | S |
D464886 | Bried et al. | Oct 2002 | S |
6460718 | Vogel | Oct 2002 | B1 |
D465732 | Kick | Nov 2002 | S |
6478179 | Alexander | Nov 2002 | B1 |
D466408 | Baerenwald et al. | Dec 2002 | S |
D467801 | Baerenwald et al. | Dec 2002 | S |
6488187 | Sheffler et al. | Dec 2002 | B2 |
6510971 | Martin | Jan 2003 | B1 |
D474402 | Baerenwald | May 2003 | S |
6575323 | Martin et al. | Jun 2003 | B1 |
6575684 | Heinicke et al. | Jun 2003 | B2 |
6626314 | McHenry et al. | Sep 2003 | B1 |
6691901 | Parve et al. | Feb 2004 | B2 |
6722517 | Steeber et al. | Apr 2004 | B1 |
6732873 | Bried et al. | May 2004 | B2 |
6742666 | Bried et al. | Jun 2004 | B1 |
6783020 | Featherston et al. | Aug 2004 | B2 |
D498419 | Martin | Nov 2004 | S |
6830721 | Martin | Dec 2004 | B2 |
6837392 | Laurent | Jan 2005 | B2 |
D502398 | Leonzo et al. | Mar 2005 | S |
6889861 | Arcati et al. | May 2005 | B2 |
D507934 | Featherston et al. | Aug 2005 | S |
D509426 | Samz et al. | Sep 2005 | S |
6968724 | Hubball | Nov 2005 | B2 |
D513452 | Parve | Jan 2006 | S |
D513585 | Biesecker et al. | Jan 2006 | S |
7007830 | Parve et al. | Mar 2006 | B2 |
7014060 | Richardson | Mar 2006 | B2 |
D522362 | Liebe | Jun 2006 | S |
7059490 | Son | Jun 2006 | B2 |
7089825 | Klosterman | Aug 2006 | B2 |
D527627 | Liebe | Sep 2006 | S |
D529800 | Liebe | Oct 2006 | S |
D530610 | Samz et al. | Oct 2006 | S |
7121438 | Hoepner et al. | Oct 2006 | B2 |
7128227 | Skillin et al. | Oct 2006 | B2 |
7152753 | Huffman et al. | Dec 2006 | B2 |
7152766 | Walsh et al. | Dec 2006 | B1 |
7175042 | Durdon | Feb 2007 | B2 |
7191911 | O'Neill | Mar 2007 | B2 |
7246716 | Durdon | Jul 2007 | B2 |
7275653 | Tedford, Jr. | Oct 2007 | B2 |
7513380 | Canedo | Apr 2009 | B2 |
D600118 | Brehelin | Sep 2009 | S |
D646971 | Chmela | Oct 2011 | S |
8857644 | Phillips | Oct 2014 | B2 |
20010035417 | Kantor et al. | Nov 2001 | A1 |
20020027139 | O'Neill | Mar 2002 | A1 |
20030029891 | Alexander | Feb 2003 | A1 |
20030089713 | Belt et al. | May 2003 | A1 |
20030089714 | Dart et al. | May 2003 | A1 |
20030116524 | Robinson et al. | Jun 2003 | A1 |
20030178433 | Adams | Sep 2003 | A1 |
20030230575 | Laurent | Dec 2003 | A1 |
20040060935 | Perra | Apr 2004 | A1 |
20050006334 | Luker | Jan 2005 | A1 |
20050092748 | Durdon | May 2005 | A1 |
20050092749 | Durdon | May 2005 | A1 |
20050092755 | Brown et al. | May 2005 | A1 |
20050098561 | Schwoebel | May 2005 | A1 |
20050127075 | Smith et al. | Jun 2005 | A1 |
20050139597 | O'Neill | Jun 2005 | A1 |
20050150889 | Perra | Jul 2005 | A1 |
20060000832 | Smith et al. | Jan 2006 | A1 |
20060081633 | Schmidtner et al. | Apr 2006 | A1 |
20060096983 | Patterson | May 2006 | A1 |
20060180585 | Cunningham et al. | Aug 2006 | A1 |
20060201944 | Shibasaka et al. | Sep 2006 | A1 |
20060201945 | Tedford | Sep 2006 | A1 |
20060237471 | Aafjes | Oct 2006 | A1 |
20060261068 | Schmidtner et al. | Nov 2006 | A1 |
20070012698 | Durdon et al. | Jan 2007 | A1 |
20070029322 | Durdon et al. | Feb 2007 | A1 |
20070131691 | Evans | Jun 2007 | A1 |
20070145055 | Gardiner | Jun 2007 | A1 |
20070215625 | Schmidtner et al. | Sep 2007 | A1 |
20070257037 | Scarborough | Nov 2007 | A1 |
20070262079 | Paris et al. | Nov 2007 | A1 |
20080029512 | Smith et al. | Feb 2008 | A1 |
20080053997 | Perra | Mar 2008 | A1 |
20080138132 | Yamashita et al. | Jun 2008 | A1 |
20080245806 | Strube | Oct 2008 | A1 |
20080302797 | Phillips | Dec 2008 | A1 |
20080314904 | Perra | Dec 2008 | A1 |
20090173737 | Ramsey et al. | Jul 2009 | A1 |
20100133275 | Phillips | Jun 2010 | A1 |
20110031247 | Bratsch | Feb 2011 | A1 |
20120138621 | Bratsch | Jun 2012 | A1 |
20120145712 | Bratsch | Jun 2012 | A1 |
20120152949 | Bratsch | Jun 2012 | A1 |
20130264342 | Bratsch | Oct 2013 | A1 |
20130320013 | Bratsch | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
0305598 | Mar 1989 | EP |
0513401 | Nov 1992 | EP |
0865993 | Sep 1998 | EP |
1097087 | May 2001 | EP |
01247752 | Oct 2002 | EP |
01746042 | Jan 2007 | EP |
2326560 | Jun 2011 | EP |
2663502 | Nov 2013 | EP |
2828478 | Feb 2003 | FR |
02258208 | Feb 1993 | GB |
2317882 | Apr 1998 | GB |
2355644 | May 2001 | GB |
09095351 | Apr 1997 | JP |
10264931 | Oct 1998 | JP |
1021536 | Mar 2004 | NL |
1024270 | Mar 2005 | NL |
1028568 | Sep 2006 | NL |
19909930 | Sep 1990 | WO |
94007755 | Apr 1994 | WO |
1997047525 | Dec 1997 | WO |
19970047525 | Dec 1997 | WO |
1998005570 | Feb 1998 | WO |
1999067150 | Dec 1999 | WO |
200002785 | Jan 2000 | WO |
200039001 | Jul 2000 | WO |
2001031266 | May 2001 | WO |
200214180 | Feb 2002 | WO |
2002081322 | Oct 2002 | WO |
200342058 | May 2003 | WO |
200347994 | Jun 2003 | WO |
20040106187 | Dec 2004 | WO |
2005023666 | Mar 2005 | WO |
2005044676 | May 2005 | WO |
2005056400 | Jun 2005 | WO |
2005068312 | Jul 2005 | WO |
2005068313 | Jul 2005 | WO |
2005092728 | Oct 2005 | WO |
2006009450 | Jan 2006 | WO |
2006039044 | Apr 2006 | WO |
200747590 | Apr 2007 | WO |
2008098558 | Aug 2008 | WO |
2009049601 | Apr 2009 | WO |
2009062004 | May 2009 | WO |
2009103817 | Aug 2009 | WO |
2009118339 | Oct 2009 | WO |
2010062977 | Jun 2010 | WO |
2010094793 | Aug 2010 | WO |
2010115911 | Oct 2010 | WO |
2011026991 | Mar 2011 | WO |
2011026993 | Mar 2011 | WO |
2011124552 | Oct 2011 | WO |
2012031994 | Mar 2012 | WO |
2012049280 | Apr 2012 | WO |
2012150301 | Nov 2012 | WO |
2013079730 | Jun 2013 | WO |
2014044606 | Mar 2014 | WO |
2015036525 | Mar 2015 | WO |
Entry |
---|
International Preliminary Report on Patentability for PCT/US2008/064570 dated Dec. 11, 2009. |
International Search Report for PCT/US2009/065963 dated Jan. 26, 2010. |
Partial English language translation of Mexican Office Action No. Mx/a/2011/005562, dated Jan. 8, 2014. |
Supplementary European Search Report dated Apr. 16, 2015 for Application No. 09829810.2. |
Second Office Action dated Jun. 19, 2014 in Mexican Application No. Mx/a/2011/005562. |
Number | Date | Country | |
---|---|---|---|
20150060450 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12626306 | Nov 2009 | US |
Child | 14486942 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12324386 | Nov 2008 | US |
Child | 12626306 | US |