Machines for applying closures to containers are well known and widely used. The present invention relates to the application of threaded closures to containers having threaded necks, and is particularly directed to the application of closures to containers which hold consumable liquids, such a milk.
It is nearly impossible with practical cleaning systems to remove all milk residues and deposits from the milk contact surfaces of milk bottling and capping equipment. One of the major difficulties with most currently used equipment, closures and containers, is the need to thoroughly and frequently clean the equipment so that the contents of the containers is not contaminated.
Overtightening or stripping of the threaded connection between the closure and the container is also a problem. Applying threaded closures to milk containers is particularly problematic because milk is lubricious, making stripping a significant problem in milk bottling operations.
Many bottlers, for convenience and to reduce costs associated with shipment of empty containers, blow mold containers on-site. Because many bottlers do not have expertise in blow molding operations and, in particular, tooling maintenance, serious problems can arise, such as bottles being molded to configurations which significantly vary over time. In some instances, bottlers have other difficulties maintaining consistent quality in the manufacture of their bottles. Problems such as excessive flash, mismatching of mold components, excessive parison pleating, and non-round openings are common in on-site blow molding operations. While caps are generally molded to relatively precise and consistent dimensions, blow molded bottles generally are not, particularly bottles made by bottlers who blow mold bottles on-site. To provide a reliable closure on bottles of varying dimensions and quality is a difficult challenge for cap suppliers.
The present inventions have particularly beneficial application in turret-type capping equipment of the general type shown and described in the following U.S. Pat. Nos. 3,771,284; 5,197,258; and 5,473,855. However, the spindle assembly and related rotation inducing equipment could be used in other types of machinery. When used with turret-type machinery, a cap feeder assembly is used to bring a cap into initial proximity to a moving container neck. A conveyer brings the container into engagement with the cap and delivers the container (with the cap loosely disposed atop the container) to a capping station on the turret. The container support of the turret holds the container in vertical alignment with a spindle assembly. When the container support engages a cam, the container (with a cap loosely positioned on the container neck) is lifted into engagement with a chuck at the lower end of a drive shaft of the spindle assembly. The drive shaft of the spindle assembly has a chuck carried by the lower portion of the spindle, which grips the cap as the bottle and cap are brought into engagement with the chuck.
When the turret rotates, a pinion gear at or near the upper end of the drive shaft of the spindle assembly delivers torque to the drive shaft due of the engagement of the pinion gear with a stationary and much larger gear wheel mounted atop the turret. In a typical turret capping machine the gear wheel is continuous. However, as shown in U.S. Pat. No. 5,473,855, the gear wheel may be less than a full circle, and torque may be delivered to the drive shaft intermittently. The interface where torque is transferred from gripping jaws on the chuck to knurls formed on the outside surface of the cap (i.e., the chuck/cap interface) is designed to prevent stripping of the cap as it is tightened onto the threads of the container.
In one embodiment described herein, a cap is designed to have a series of areas where some of the knurls on the exterior of the skirt portion of the cap extend radially outwardly beyond other knurls, such that the extended knurls are the primary points of contact with the gripping jaws of the chuck. If the cap tightens before the spindle assembly stops rotating, the extended knurls deflect and allow continued rotation of the chuck, even though the cap has stopped rotating, thus preventing the stripping of the threads of the cap relative to the threads on the container neck.
Thus, the knurls on the cap and splines on the jaws inside the chuck as described herein are specifically designed to simplify and facilitate the application of threaded caps to threaded containers. The chuck/cap interface described and claimed herein is designed to reduce the number of moving and fixed parts by eliminating the need for a clutch mechanism in a capping spindle. This objective is achieved the a chuck and cap combination that includes a very simple and easily cleaned chuck and a cap with a specially designed surface that is contacted by the jaws of the chuck.
Furthermore, the simplicity of chuck described and claimed herein significantly reduces down time needed to clean and disinfect the capping machine and reduces the chance of unwanted bacteria from making its way into any bottles.
These and other objects and advantages of the present invention will be better understood upon a reading of the following specification read in conjunction with the accompanying drawings.
As the turret 10 rotates in the direction of the arrow shown in
The drive shaft 12 is held in place by a lower lock collar 68 which connects to the drive shaft 12 below the lower surface of the lower plate 18. An upper lock collar 70 is attached to the drive shaft 12 at a location which is adjacent to the underside of the upper plate 16. The lock collars 68 and 70 resist upward forces applied to the drive shaft 12 when a cap 30 is brought into engagement with the chuck 24, which occurs when a bottle 28 (with a cap loosely carried atop the bottle) is lifted by the cam 34.
A hinged stop arm 26 is supported by an outer ring 72. The outer ring 72 is held in place below the lower plate 18 by an inner ring 74. The inner ring 74 is connected to the lower plate 18 by a single bolt 76 and a pair of dowel pins 78. The ring 74 is prevented from rotating by the bolt 76 and the dowel pins 78. This arrangement allows for quick adjustment of the rotational position of the stop arm 26, because the bolt 76 is on the outwardly facing side of the lower plate 18 and is therefore easily accessible by a service person. Loosening the bolt 76 will allow the entire inner ring 74 to drop and release the grip that it has on the outer ring 72 so that the stop arm 26 may be positioned at any radial position around the drive shaft 12. The stop arm 26 is intended to engage the handle on a container to prevent the container from rotating as the drive shaft 12 and chuck 24 apply torque to a cap on the container.
Four cap gripping jaws 94 fit into the main recess 88 in the chuck housing 84. Each jaw 94 is held in the main recess 88 by a combination of pivot screws 96, which extend with some clearance into bores 98 formed in the outside wall of each jaw, and C-shaped spring 97. One pivot screw 96 provides vertical support for each jaw 94, the spring 97 urges all of the jaws radially outwardly so as to keep the each jaw in engagement with its respective pivot screw 96. Each of four pivot screws 96 extends through the outer wall of the chuck housing 84 such that an unthreaded portion 99 extends inwardly from the inner wall of the chuck housing and into a bore 98 formed on the outer surface of each gripping jaw 94. The bore 98 extends into but not through the cap gripping jaw 94. The diameter of the unthreaded end 99 of the pivot screw 96 is somewhat smaller than the diameter of the bore 98 such that each gripping jaw may pivot repeatedly about the unthreaded portion of the pivot screw 96 by which the jaw is supported without binding.
The interaction between the knurls 58, 56 and 54 (the outer knurls 58 in particular) and the splines 106 is important in that this chuck/cap interface eliminates the need for a complex clutch mechanism. The splines (particularly when the cap is made of low density polyethylene—LDPE) give way and allow slippage of the chuck at about 35 inch-pounds of torque, when a four-thread cap like the one shown in
The upper quadrant shaped plate-like section 102 of each jaw 94 is preferably disposed at a slight angle (about 4 degrees) with respect to horizontal, and the outside surface of the wall 104 is comprised of two conical sections, including an upper conical section 105 making an angle of about 83 degrees with respect to horizontal, and an axially longer lower conical section 107 disposed at about 86½ degrees from horizontal.
The four upper quadrant shaped plate-like sections 102 of the gripping jaws 94 converge to define a central opening 108 which is slightly larger in diameter than the neck 10 of the jaw actuator 100. The jaw actuator 100 includes a guide piston 112 which fits closely, but moves freely, within a guide cylinder 114 in the chuck housing 84.
The guide piston 112 is joined to an actuator plate 113 by a reduced-diameter neck 110. A central core passageway 118 extends from the upper end of the guide piston 112 to the lower side of the actuator plate 113, such that the passageway 118 passes all the way through the actuator 100 from one end to the other. Small vent holes 117 are formed in the upper end of the guide cylinder 114 to avoid pressure variations within the guide cylinder 114 resulting from movement of the guide piston 112 in the guide cylinder 114. A set of holes 120 are formed in the actuator plate 113, and the holes 120 together with the central opening 118 form pathways for the free flow cleaning fluid, making the actuator, the chuck housing 84 and the jaws 94 easy to keep clean.
As a container with a cap loosely fitted onto the neck thereof is brought upwardly into engagement with the chuck 24, the cap on the container contacts the lower surface 116 of the jaw actuator 100. As the cap and container continue to be pushed upwardly, and with the chuck turning constantly (or intermittently, depending upon the design of the turret) the jaw actuator 100 causes the jaws 94 to pivot about the pivot screws 96 such that the upward force of the cap and container result in a lateral gripping force exerted by the jaws 94 on the splined surfaces of a cap 30 (See FIG. 2). Thus, each jaw is urged outwardly to a first “jaws open” position by the spring 97 (See FIG. 7). However, when a cap-carrying container is urged upwardly, the actuator 100 causes the jaws to pivot into a second “jaws closed” position. At the same time as this gripping action occurs, rotational force and rotational movement results from the engagement of the pinion gear 22 with the gear wheel 23, as shown in FIG. 1.
While specific embodiments of the inventions have been shown and described, it is believed that numerous alternatives, modifications, and variations of the embodiments shown and described herein may be realized by persons of ordinary skill in the arts to which the inventions pertain, and such persons may devise a number of such alternatives, modifications, and variations of the embodiments shown and described herein without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2176133 | Hogg | Oct 1939 | A |
2835093 | Ford et al. | May 1958 | A |
3303633 | Wilhere | Feb 1967 | A |
3434266 | Wolf et al. | Mar 1969 | A |
3578038 | Burford | May 1971 | A |
3771284 | Boeckmann et al. | Nov 1973 | A |
3871425 | Fee et al. | Mar 1975 | A |
3892264 | Held | Jul 1975 | A |
3906706 | Conti | Sep 1975 | A |
3984965 | Sonnenberg | Oct 1976 | A |
4389833 | Knabe | Jun 1983 | A |
4527377 | Hayashi et al. | Jul 1985 | A |
4905447 | Margaria | Mar 1990 | A |
5040354 | Ahlers et al. | Aug 1991 | A |
5150558 | Bernhard | Sep 1992 | A |
5197258 | Johanek | Mar 1993 | A |
5220767 | de Santana | Jun 1993 | A |
5235793 | Heudecker | Aug 1993 | A |
5473855 | Hidding et al. | Dec 1995 | A |
5884450 | Ronchi | Mar 1999 | A |
6170232 | VandeGeijn | Jan 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040237471 A1 | Dec 2004 | US |