The present disclosure relates generally to the construction of containers and, more particularly to the construction of closures for containers.
Infants and individuals who have special dietary needs, are convalescing or who are otherwise vulnerable to sicknesses, can require highly nutritive liquid food products and food supplement products. Being highly nutritive, some of these food products present preferential growth sites for fungi, bacteria and other microbes that could infect or sicken intended recipients. Accordingly, to minimize the risk of sickness and infections, these highly nutritive food products are preferably prepared, maintained and delivered very hygienically and under conditions designed to inhibit microbial growth. For example, the product and the storage containers in which the product is kept can be sterilized and the product packaged into the storage containers under aseptic conditions to remove microbes that could grow in the product. In these aseptic procedures, a food or beverage product is sterilized by quick exposure to ultra-high heat, rapidly cooled to an ambient temperature, and filled into sterilized containers that are then sealed in a commercially sterile environment. However, conditions for packaging, storing and delivering the product should not be so harsh as to damage the food product by destroying its flavor, texture or unduly diminishing its nutritive value.
Aseptic packaging techniques typically require that the packaging take place in a sterile environment. Manufacturers commonly package their products in pre-sterilized containers capable of providing a shelf life of 150 days or more. For the aseptic packaging of food products, aseptic fillers generally use FDA (Food and Drug Administration) approved sterilants, meet FDA quality control standards, use sterile production line enclosures or clean rooms, and aseptically treat all packaging material. The food product should also be processed using an “Ultra High Temperature” (UHT) pasteurization process to meet FDA aseptic standards. The packaging material should remain in a sterile environment during filling, closure, and sealing operations.
In one example of an aseptic process in which bottles to be used for liquid food storage are sterilized and filed with the liquid food product, the aseptic process applies a hot atomized sterilant, such as hydrogen peroxide spray, onto the interior surface of each container, and subsequently activates and removes the sterilant in drying stations using hot sterile air. Hydrogen peroxide breaks down into water and oxygen, and thus oxidizes and kills microbes such as bacteria within the container. To achieve aseptic sterilization, a minimum container temperature is developed and held for a predetermined period of time (e.g., 131° F. for 5 seconds) after application of the sterilant. After container drying, the residual hydrogen peroxide in the container is below a predetermined level (e.g., about 0.5 PPM (parts per million)).
Other container components, such as container closures and products to be stored in the containers can also be aseptically processed or otherwise sterilized. However, microbes may be removed from these other components using different aseptic processes that take account of the difficulty of removing, location, type and quantity of the microbes, the ability of the component to withstand the conditions it may experience during the aseptic process without damage, as well as the speed and cost of aseptic processing.
Liquid infant formula is one food that conventionally has been aseptically packaged in bottles and similar containers. It is a manufactured food generally designed and marketed for feeding to babies and infants. Commonly used infant formulas include purified cow's milk whey and casein as a protein source, a blend of vegetable oils as a fat source, lactose as a carbohydrate source, a vitamin-mineral mix, and other ingredients depending on the manufacturer. In addition, there are infant formulas using soybean as a protein source in place of cow's milk and formulas using protein hydrolyzed into its component amino acids for infants who are allergic to other proteins. The liquid infant formula ingredients are typically mixed according manufacturer-specific procedures with specific temperatures and durations, after which the mixture can be pasteurized, homogenized, standardized and packaged.
Liquid and solid food product has also conventionally been sterilized using retort packaging processes. In these retort processes, food is filled into a pouch, metal can, or other suitable container, sealed, and then heated to extremely high temperatures, rendering the product commercially sterile. When manufacturing infant formula, the infant formula is generally sterilized together with its packaging after it is filled in its retail container. During sterilization, the filled retail containers are heated and cooled to destroy any contained microorganisms. The finished containers can then be packed in cartons and stored for shipping.
However, these infant formula products may be missing ingredients that are normally present in natural breast milk, such as the transferrin protein lactoferrin, or that may otherwise be beneficial for the infant, such as probiotics like the lactic add bacterium Lactobacillus rhamnosus Gorbach & Goldin (LGG). These missing ingredients can be added as supplements to the infant formula.
Some potential supplements are heat sensitive or are otherwise adversely affected by the severe conditions that may be present during aseptic processing and packaging or retort processing after packaging. Exposure to excessive heat can kill the heat sensitive bacterium and diminish the functionality of the heat sensitive protein in the supplement. Adding these supplements can require more difficult and costly aseptic filtration and dosing processes that may increase manufacturing costs and make the product too expensive for needy users. A need exists to improve available packaging techniques for high nutritive liquid food products so that heat sensitive ingredients and supplements can be included while the liquid is rendered shelf-stable, while maintaining the ease for users to prepare the packaged product for consumption.
Various embodiments relate to aspects of providing a closure for a container that stores a nutritive liquid food product with a heat sensitive supplement. In some embodiments, the closure can include a sealed secondary chamber in which heat sensitive supplements can be stored. A separate first or main chamber in the container can contain the remaining liquid ingredients of the nutritive liquid food product, which can be filled aseptically in the main chamber or sterilized in the main chamber by retort processing. A membrane, such as a metallic foil or polymeric film can be attached across an aperture of the container as a microbe barrier that maintains the sterility of the first chamber's contents. The closure can be attached to the container as a further barrier and protection for the liquid food product and the heat sensitive supplement in the container assembly. Prior to use, heat sensitive ingredients in the closure's sealed chamber can be conveniently combined with the nutritive liquid food product and dispensed from the container. After dispensing some of the product the closure can reseal the container to store the remaining product for later use. Some embodiments can include additional features to facilitate convenient preparation of the packaged product for use.
In one embodiment, the disclosure provides a container assembly including a container having a first chamber formed from a base wall and at least one sidewall that extends from the base wall to surround the first chamber. The sidewall has an aperture into the first chamber. The container assembly can further include a closure attached to the aperture. The closure has a collar surrounding a passage that extends through the aperture to the first chamber and a hingedly connected lid that can be moved between an open and closed position that occludes the passage. The closure also includes a second chamber separated from the first chamber by a barrier wall that is openable to permit material flow between the first and second chambers.
According to one aspect of this embodiment, the first chamber of the container assembly can be sterile. Also, the second chamber of the container assembly can be formed on the collar such that it partially occludes the passage. Additionally the collar can include a spout to facilitate pouring fluid from the container assembly.
According to another aspect of this container assembly, the barrier wall of the second chamber can be a removable seal. Alternatively, the second chamber can include a second chamber top wall that is depressible to rupture the barrier wall. Optionally, the barrier wall can be configured to rupture by an increasing fluid pressure in the second chamber generated by depression of the second chamber top wall. In another option the second chamber can include a member coupled to the second chamber top wall that is configured to penetrate the barrier wall when the second chamber top wall is depressed. Further, the container sidewall can include a first male threaded connector surrounding the aperture, and the collar can include a second female threaded connector that can coupled together to attach the collar to the container.
According to another aspect of the container assembly, the first chamber can include a liquid infant formula and the second chamber can include a heat sensitive infant formula nutritive supplement. Optionally the heat sensitive infant formula nutritive supplement can be lactoferrin.
In another embodiment, the disclosure provides a closure for a container including a collar having a collar wall surrounding a passage. The collar wall extends between a lower opening and an upper opening of the passage and is adapted to sealably couple a periphery of the lower opening to a container aperture. The closure also includes a lid hinged to the collar and movable between a closed position, which covers and seals the collar upper opening, and an open position, which permits a fluid entering the passage from one of the lower and upper opening to flow out of the other opening. The closure further includes a compartment that encloses a chamber and extends from the collar into the passage, the compartment having a barrier wall that seals the chamber from the passage. The barrier wall can be unsealed to expose the chamber to the passage.
The chamber can contain any substance that can beneficially be stored separately from the liquid product in the first chamber. Optionally, the chamber can contain a heat sensitive nutritive supplement. Specifically, in some embodiments, the heat sensitive nutritive supplement can be lactoferrin.
In alternative closure according to this embodiment, the compartment can include a depressible top wall that a user can depress to unseal the barrier wall. Optionally, the barrier wall can be configured to unseal by rupturing as a result of an increased internal compartment pressure generated when the depressible top wall is depressed. According to an alternative option, the barrier wall can be configured to unseal by rupturing as a result of a member coupled to the depressible top wall penetrating the barrier wall when the depressible top wall is depressed. In a still further alternative, the barrier wall can be a removable seal having a tab that a user can pull to unseal the barrier wall.
A side cross sectional view of a container assembly 10 according to an embodiment of the present disclosure is shown in
A closure 2 is attached at the aperture 11 of the container and includes a collar that surrounds a passage 17. The collar is formed by collar wall 15 which extends between lower opening 18 and upper opening 5 of passage 17. Lid 9 is hinged to the collar so that lid 9 can move between a closed position and an open position. In the closed position, lid 9 extends to seal across upper opening 5 and second chamber 7 of the closure 2 to prevent fluid flow into or out of first chamber 1 through upper opening 5. Chamber 7 extends from collar wall 15 part of the way across passage 17, but does not completely occlude passage 17 so that a sufficient opening exists for fluid passing through opening 18 and passage 17 to exit through upper opening 5. Closure 2 further includes a spout 3 to facilitate pouring liquid food product from closure 2.
Container 16, including base wall 12 and sidewall 4 can be constructed of materials commonly used in similar containers for storing liquid food products, such as metals, polymers and combinations thereof. Suitable polymers can include, for example, polypropylene, high-density polyethylene, low-density polyethylene, polystyrene-acrylonitile, acrylonitile-butadiene-styrene, styrene-maleicanhydride, polycarbonate, polyethylene terephthalate, polyvinylcyclohexane, and blends and/or layers thereof. First chamber 1 of container 16 can be used to store a highly nutritive liquid food product, such as liquid infant formula by aseptic or retort processes. It will be understood that filling first chamber 1 can be performed using conventional liquid filling equipment commonly used in the food and beverage industry. The container 16 and its contents can be sterilized under aseptic or retort processing conditions by heating and subsequently cooling the container 16 and its contents as is known in the art. Once container 16 is filled, a membrane 13 acting as a microbe barrier can be attached across aperture 11 to prevent contamination and loss of sterile conditions of container 16 contents.
Closure 2, including collar wall 15 and lid 9 top wall 6 of second chamber 7 can be constructed of materials commonly used in similar closures. Suitable materials can include polymers, such as polypropylene, high-density polyethylene, low-density polyethylene, polystyrene-acrylonitile, acrylonitile-butadiene-styrene, styrene-maleicanhydride, polycarbonate, polyethylene terephthalate, polyvinylcyclohexane, and blends thereof. Second chamber 7 can be used to aseptically store a nutritive supplement 8 sealed separately from first chamber 1. As such, second chamber 7 is preferably enclosed by top wall 6 as well as a barrier wall that separates second chamber 7 from passage 17.
Stored nutritive supplement 8 can be a liquid, gel or solid heat sensitive material that would likely deteriorate under the aseptic processing of the fluid in first chamber 1 and that would preferably flow into passage 17 if the barrier wall were ruptured or removed. In some embodiments, nutritive supplement 8 is a probiotic, such as LGG, or a beneficial protein such as the transferrin protein lactoferrin. Because nutritive supplement 8 is filled and stored in closure 2 separately from the liquid food product in container 16, it can be stored under conditions that minimize microbial growth as compared to the conditions in the first chamber. Accordingly, even substances that are not heat sensitive, but that could reduce microbial growth or otherwise increase shelf life of the overall product can advantageously be stored in the second chamber.
It will be understood that according to one option, nutritive supplement 8 can be formulated as a particulate heat sensitive nutritive infant formula supplement. The dry conditions under which supplement 8 can optionally be stored in second chamber 7 inhibits or prevents the growth of microbes. Subsequently, after the first container is filled with the liquid food product under sterile conditions and closed with container seal 13 to maintain sterility, closure 2 with filled second chamber 7 can be mated to container 16 as shown in
Referring now to
Second chamber 27 of closure 20 is formed by top wall 26 and enclosed by a barrier wall. In the embodiment of
Second chamber 37 of closure 30 is formed by top wall 36 and enclosed by a barrier wall. In the embodiment of
When pressed by a user, top wall 36 should be depressed significantly so as to compress the contents and increase the pressure within second chamber 37. At the deformable portion, top wall 36 should be sufficiently resilient so as not to crack or rupture when depressed, yet sufficiently deformable under the force of a user's finger to generate the desired pressure increase in the second chamber 37. Preferably, seal 32 should not be so readily deformable as top wall 36 and should present a relatively unyielding barrier against which internal pressure of second chamber 37 can build. However, seal 32 should be designed to break and rupture rapidly, and reasonably predictably, when a desired internal pressure is reached, thereby readily ejecting the pressurized contents of second chamber 37.
To facilitate predictable and effective rupturing or breaking so that the contents of second chamber are easily ejected, the barrier wall of the various embodiments can be selectively reinforced. The film or foil of the barrier wall can have a patterned coating that adds additional thickness, strength or toughness to the coated areas, leaving the uncoated areas more easily rupturable by comparison. Foils or films used in the barrier wall can be metallic foils, paper, or polymer films, such as polypropylene, polyethylene terephthalate (PET), nylon, polyethylene and cast polypropylene, for example. Foils or films can be made of a combination of these materials that are mixed together or laminated to form the base foil or membrane material. The base foils or films can further be metalized or coated, for example, by applying a polymeric or resinous material by printing, coating, spraying or hot stamping and may bond through cooling, curing (such as ultra violet curing) or drying. Patterned masks on the film surface can be used limit the film surfaces on which the coating is deposited.
To facilitate seeing through view window 69, view window 69 can be made from a transparent polymer. Optionally view window 69 can be made the same polymer material as closure 60 but without dyes or other materials that may make the material of view window 69 opaque. As a further option, view window 69 can have a thinner cross section to enhance its transparency or can even be an opening in the outer wall of the closure that is covered with a clear label. As with the closures of the other embodiments, the second chamber can include a barrier wall 64 that can be a rupturable or removable seal. Closure 60 is shown attached to a threaded connection at an opening defined by container sidewall 4. Container sidewall 4 defines a first chamber 1 of the container. It will be understood that view window 69 of the present embodiment can similarly be applied to other embodiments of the closure and container assembly described herein. Similar to the embodiment of
Referring now to
A lower edge of lid 81 opposite living hinge 83 forms a lid lip 89 having a cam or protrusion designed to engage an opposing cam, protrusion or recess in a collar lip 90 as lid 81 is rotated to a closed position to snap lid 81 shut against collar 82. Collar lip 90 extends from an upper edge of collar 82 opposite living hinge 83. By engaging with each other, lid lip 89 and collar lip 90 can hold lid 81 in a closed position over collar 82. But it should be understood lips 89 and 90 are just one exemplary method of holding lid 81 closed and that other closing and locking mechanisms known in the art can be used instead of or in addition to the mechanisms described.
First chamber 1 can be filled with a desired liquid product as previously described. Once first chamber 1 is filled, closure 80 can be attached to container 16 via container thread 92 of neck 93 to seal opening 95 and prevent microbes and other contaminants from entering first chamber 1. Container seal 84 is attached to container 16, as shown in
In the embodiment of
To mix and dispense the contents of the container assembly 10 of
Thus, although there have been described particular embodiments of the present disclosure of a new and useful container and closure, it is not intended that such references be construed as limitations upon the scope of this disclosure except as set forth in the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/075269 | 10/4/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
Parent | 15285578 | Oct 2016 | US |
Child | 16338738 | US |