The disclosure relates generally to a locking container device.
Bottles that may be locked to prevent access to the contents of the bottle, such as a medication, by an unauthorized user exist. These bottles, however, only allow items that are as big as the neck of the bottle (which is typically smaller than the bottle) to be securely stored in the bottle. Thus, it is desirable to provide a container device that allows items larger than the neck of the bottle to be securely stored using the container device.
The disclosure is particularly applicable to a clamshell container device that uses a twist-on combination lock to secure the contents of the clamshell container device and it is in this context that the disclosure will be described. It will be appreciated, however, that the container device and method has greater utility since the container device may be of different sizes and shapes that those of the embodiment shown and/or may use other types of locking devices to secure the contents of the container device.
In one embodiment shown in
In one embodiment, the container device may be a clam shell container which is secured with a locking device. This clam shell container allows for storage of items which are larger than the neck size of the container device. The locking device may be a twist-on closure, a 4 digit combination locking cap or any other locking device that may be attached to a neck of the container device and locked so that the contents within the container device are secured from unauthorized access as long as the locking device is locked. The locking device may be opened by providing the appropriate open code, such as a correct open 4 digit combination if a 4 digit combination lock is being used. Furthermore, the locking device may provide a mechanism to reset the password of the locking device. The use of a lid on the closure holds the container shut so, when closed, the contents inside are secure. A hinge allows for larger items to be stored within the container regardless of its smaller closure size. There may be wings on the side of the closure to secure a tight fit with a gasket to make the device water and smell resistant. This device can be used to secure items from unauthorized users. Medications are a common item which can be secured within this device.
The locking device 1 may be a combination locking closure (1), but any locking closure or twist-on closure can be used to seal this container in the closed position. In one implementation, the locking closure may be a 4 symbol combination locking cap as disclosed in U.S. Pat. No. 8,931,652, issued on Jan. 13, 2015, U.S. Pat. No. 9,199,773, issued on Dec. 1, 2015 and U.S. patent application Ser. No. 14/954,686, file Nov. 30, 2015, all of are owned by the same assignee as this application and all of which are incorporated by reference herein.
The container 2, when in a closed position as shown in Figure, may have one or more sets of clip wings 6 (shown in a downward position in
As shown in
In one implementation, the user may enter a lock code into the locking device. In another implementation, the user may enter a combination other than the unlock combination into a combination lock that locks the locking device. The user may then unlock the container and the locking device by entering the unlock code or the unlock combination. The container device also allows the user, when the locking device is unlocked, to reset the unlock code or unlock combination.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated.
The system and method disclosed herein may be implemented via one or more components, systems, servers, appliances, other subcomponents, or distributed between such elements. When implemented as a system, such systems may include an/or involve, inter alia, components such as software modules, general-purpose CPU, RAM, etc. found in general-purpose computers. In implementations where the innovations reside on a server, such a server may include or involve components such as CPU, RAM, etc., such as those found in general-purpose computers.
Additionally, the system and method herein may be achieved via implementations with disparate or entirely different software, hardware and/or firmware components, beyond that set forth above. With regard to such other components (e.g., software, processing components, etc.) and/or computer-readable media associated with or embodying the present inventions, for example, aspects of the innovations herein may be implemented consistent with numerous general purpose or special purpose computing systems or configurations. Various exemplary computing systems, environments, and/or configurations that may be suitable for use with the innovations herein may include, but are not limited to: software or other components within or embodied on personal computers, servers or server computing devices such as routing/connectivity components, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, consumer electronic devices, network PCs, other existing computer platforms, distributed computing environments that include one or more of the above systems or devices, etc.
In some instances, aspects of the system and method may be achieved via or performed by logic and/or logic instructions including program modules, executed in association with such components or circuitry, for example. In general, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular instructions herein. The inventions may also be practiced in the context of distributed software, computer, or circuit settings where circuitry is connected via communication buses, circuitry or links. In distributed settings, control/instructions may occur from both local and remote computer storage media including memory storage devices.
The software, circuitry and components herein may also include and/or utilize one or more type of computer readable media. Computer readable media can be any available media that is resident on, associable with, or can be accessed by such circuits and/or computing components. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and can accessed by computing component. Communication media may comprise computer readable instructions, data structures, program modules and/or other components. Further, communication media may include wired media such as a wired network or direct-wired connection, however no media of any such type herein includes transitory media. Combinations of the any of the above are also included within the scope of computer readable media.
In the present description, the terms component, module, device, etc. may refer to any type of logical or functional software elements, circuits, blocks and/or processes that may be implemented in a variety of ways. For example, the functions of various circuits and/or blocks can be combined with one another into any other number of modules. Each module may even be implemented as a software program stored on a tangible memory (e.g., random access memory, read only memory, CD-ROM memory, hard disk drive, etc.) to be read by a central processing unit to implement the functions of the innovations herein. Or, the modules can comprise programming instructions transmitted to a general purpose computer or to processing/graphics hardware via a transmission carrier wave. Also, the modules can be implemented as hardware logic circuitry implementing the functions encompassed by the innovations herein. Finally, the modules can be implemented using special purpose instructions (SIMD instructions), field programmable logic arrays or any mix thereof which provides the desired level performance and cost.
As disclosed herein, features consistent with the disclosure may be implemented via computer-hardware, software and/or firmware. For example, the systems and methods disclosed herein may be embodied in various forms including, for example, a data processor, such as a computer that also includes a database, digital electronic circuitry, firmware, software, or in combinations of them. Further, while some of the disclosed implementations describe specific hardware components, systems and methods consistent with the innovations herein may be implemented with any combination of hardware, software and/or firmware. Moreover, the above-noted features and other aspects and principles of the innovations herein may be implemented in various environments. Such environments and related applications may be specially constructed for performing the various routines, processes and/or operations according to the invention or they may include a general-purpose computer or computing platform selectively activated or reconfigured by code to provide the necessary functionality. The processes disclosed herein are not inherently related to any particular computer, network, architecture, environment, or other apparatus, and may be implemented by a suitable combination of hardware, software, and/or firmware. For example, various general-purpose machines may be used with programs written in accordance with teachings of the invention, or it may be more convenient to construct a specialized apparatus or system to perform the required methods and techniques.
Aspects of the method and system described herein, such as the logic, may also be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array logic (“PAL”) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits. Some other possibilities for implementing aspects include: memory devices, microcontrollers with memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore, aspects may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.
It should also be noted that the various logic and/or functions disclosed herein may be enabled using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) though again does not include transitory media. Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
Although certain presently preferred implementations of the invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various implementations shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the applicable rules of law.
While the foregoing has been with reference to a particular embodiment of the disclosure, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.
This patent application is a continuation of and claims priority under 35 USC 120 to U.S. patent application Ser. No. 13/585,742 filed on Aug. 14, 2014 and entitled “Lockable Cap for a Bottle,” which in turn is a divisional of and claims priority under 35 USC 120 to U.S. patent application Ser. No. 12/730,812 filed on Mar. 24, 2010 and entitled “Lockable Cap for a Bottle,” which in turn is a continuation in part of and claims priority under 35 USC 120 to U.S. patent application Ser. No. 12/573,799 filed on Oct. 5, 2009 and entitled “Lockable Cap for Medical Prescription Bottle” which in turn claims the benefit under 35 USC 119(e) to U.S. Provisional Application Ser. No. 61/239,597 and entitled “Lockable Cap for Medical Prescription Bottle” filed on Sep. 3, 2009, which is incorporated herein fully by reference.
Number | Date | Country | |
---|---|---|---|
61239597 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12730812 | Mar 2010 | US |
Child | 13585742 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13585742 | Aug 2012 | US |
Child | 15338133 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12573799 | Oct 2009 | US |
Child | 12730812 | US |