Container for elongated articles

Information

  • Patent Grant
  • 9114925
  • Patent Number
    9,114,925
  • Date Filed
    Tuesday, September 13, 2011
    13 years ago
  • Date Issued
    Tuesday, August 25, 2015
    9 years ago
Abstract
A container is provided for holding a predetermined mass of associated elongated cylindrical articles within a cavity. The container includes a bottom wall having a perimeter, a pair of spaced apart side walls extending upwardly from perimeter of the bottom wall, and a pair of spaced apart end walls extending upwardly from the perimeter of the bottom wall between the sidewalls. The container also includes at least one first step extending a height upward from the bottom wall and having a variable length, and at least one second step extending a height upward from the bottom wall and having an approximately fixed length less than the width of the container between the sidewalls.
Description
FIELD OF INVENTION

The present invention relates generally to packaging and methods for the shipping of elongated articles, and more particularly to containers for holding welding wire electrodes.


BACKGROUND

Over the past decades, welding has become a dominant process in fabricating industrial and commercial products. Applications for welding are wide-spread and used throughout the world. Examples include the construction of ships, buildings, vehicles and pipe lines. Welding is also used in repairing or modifying existing products. Among the various methods of joining metal components, arc welding is one well known and very common process.


The arc welding process may employ consumable welding wire, which in some instances may be provided in the form of stick electrodes, otherwise known as welding rods. While such containers have provided sufficient protection during bulk shipment of stick electrodes to distributors, the market for direct-to-consumer sales requires additional safeguards for shipping and storage. In some instances, the stick electrodes may be covered with a flux coating, which in some instances may be brittle and/or hygroscopic. As such, the coating may be damaged or otherwise compromised during the shipping and/or storage process prior to welding by excessive motion, exposure to the ambient environment, and other deleterious conditions. Accordingly, what is needed is a container for elongated articles, such as welding electrodes, which provides protection to the articles from both movement and other environmental conditions encountered during shipping and storage.


SUMMARY OF THE INVENTION

In one embodiment, there is provided is a container for holding a predetermined mass of associated elongated cylindrical articles within a cavity. The container comprises a bottom wall having a perimeter, a pair of spaced apart side walls extending upwardly from the perimeter of the bottom wall, and a pair of spaced apart end walls extending upwardly from the perimeter of the bottom wall between the sidewalls. Additionally, the container comprises at least one first step extending a height upward from the bottom wall and having a length equal to the width of the container between the sidewalls and at least one second step extending a height upward from the first steps and having a length less than the width of the container between the sidewalls and less than the length of the first steps.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of a container for elongated articles;



FIG. 2 is a perspective view of the container in FIG. 1 with associated elongated articles held therein;



FIG. 3 is a further perspective view of the container in FIG. 1 with associated elongated articles held therein with a flexible cover affixed about a portion of the container flange;



FIG. 4 is sectional view of the container and associated elongated articles shown in FIG. 2 taken along line 4-4;



FIG. 5 is further sectional view of the container in FIG. 1 taken along line 5-5;



FIG. 6 is a perspective view of another embodiment of a container for elongated articles illustrating a different series of steps as compared to FIG. 2;



FIG. 7 is a perspective view of the container in FIG. 6 with associated elongated articles therein;



FIG. 8 is sectional view of the container and associated elongated articles shown in FIG. 7 taken along line 8-8;



FIG. 9 is sectional view of the container in FIG. 6 taken along line 9-9;



FIG. 10 is a perspective view of yet another embodiment of a container for elongated articles illustrating still another series of steps as compared to FIGS. 2 and 6;



FIG. 11 is sectional view of the container in FIG. 10 taken along line 11-11, and



FIG. 12 is a perspective view of yet another embodiment of a container for elongated articles illustrating still yet another series of steps as compared to FIGS. 2, 6, and 10.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the disclosed subject matter only and not for purposes of limiting the same, FIGS. 1-5 show one embodiment of a container 100 utilized for storage and transport of associated elongated cylindrical articles 150, such as welding electrodes. In one embodiment, the container 100 comprises a bottom wall 120, a pair of spaced apart side walls 122, and a pair of spaced apart end walls 124. The distance between the spaced apart end walls 124 is substantially the same as the length of each of the elongated articles 150. The container 100 also includes at least one first step 130 and at least one second step 132. As shown in the FIGS., the at least one first step 130 and the at least one second step 132 may include two or more spaced apart steps 130, 132, which may be parallel spaced. In construction, the container 100 may be provided as an uncoated metal, e.g. aluminum, tray or as a tin tray at least partially coated with a lacquered film, although other materials, such as reinforced plastic, may also be used in forming the container. Prior to filling the container 100 with a predetermined mass of the associate articles 150, the container body may not be provided with either first steps 130 or second steps 132 formed therein. Rather, the container body may be provided as a non-formed blank, which may be subsequently pressed or stamped to include steps 130, 132 of varying dimension depending on the size of associated articles 150 to be packaged therein.


Still referring to FIGS. 1-5, the bottom wall 120 has a perimeter. In one embodiment, the perimeter is polygonal and has a width and a length. As shown, the spaced apart side walls 122 extend upwardly from the perimeter of the container bottom wall 120 and are perpendicular to the spaced apart end walls 124, which also extend upwardly from the bottom wall 120. Given the configuration of the walls 120122, and 124, it can be said that the walls define the volume of the container 100, which for purposes of this disclosure will be referred to as a cavity 110. A flange 140 defines the upper perimeter of the container at the top of walls 122, 124.


In construction, the side walls 122 slope outwardly from the bottom wall 120 and away from each other at a preselected angle α. In other words, the side walls 122 are angled away from vertical by half of angle α. In one embodiment, the angle α is about 60° in order to obtain a dense arrangement of the elongated articles 150. Utilizing the angle α of 60° results in a hexagonal arrangement of circles in a plane, as best shown in FIG. 4. Given that a hexagonal configuration results in the highest density of packing circles, such an arrangement of the side walls 122 permits packaging of a relatively large number of elongated articles 150 in a cavity 110 having a relatively small volume, thereby decreasing the amount of material used for packaging, thereby increasing the amount product contained within a given volume of sales space. Alternatively, it is contemplated that the angle α may be predetermined to be within a range of angles, for example between about 55° and about 65°, although both larger and smaller ranges of angles are also contemplated, albeit, with less efficiency from a packing density perspective.


Returning to FIGS. 1 and 5, the container 100 also includes a plurality of first steps 130 which extend a height H1 upward from the bottom wall 120. The first steps 130 have a variable length which is equal to the width of the container bottom between one side wall 122 and angled wall 134. Given that the walls 122, 134 angle, or slope, away from each other, it should be understood that the length of the first steps 130 varies from a relatively shorter length L1 nearer the bottom of the container 100 to a relatively longer length L2 nearer the flange 140, moving upward from the bottom wall 120 as the distance between the walls 122, 124 increases. As best shown in FIG. 1, the first steps 130 may be three steps. The first steps 130 may be spaced or arranged equidistantly along the length of the container 100, although other, asymmetrical arrangements of the steps are also contemplated.


In addition to the first steps 130, the container also includes at least one, preferably two or more, second steps 132. As illustrated in FIG. 5, the second steps 132 are extend a height H2 upward from the bottom wall 120. Unlike the first steps 130, the second steps 132 have a substantially fixed length L3 which is distance between one of the side walls 122 and the second step angled wall 134 parallel to the side wall. That is, the length L3 is approximately fixed, which is in contrast to the variable length of the first steps 130. In combination, then, the steps 130, 132 may be referred to as means for positioning the articles within the container 100. In one embodiment, at least one of each of the steps 130, 132 may extend directly from at least of the end walls 124. Although the steps 130, 132 are stamped or pressed into the container 100, it is also envisioned that an insert configured to have the same dimensions as the steps may be inserted into an unstamped container prior to filling with electrodes 150. In another embodiment, it is also envisioned that the container 100 may be molded from a plastic material.


As shown in FIGS. 4 and 5, the container cavity 110 has a first depth D1, which corresponds to the height of the container Hc minus the first step height H1. Similarly, the container cavity 110 has a second depth D2, which corresponds to the height of the container Hc minus the height of the second step H2. In the embodiment shown in FIGS. 1-5, the first depth D1 is about 5.5 times the radius of one of the elongated articles 150, which corresponds to the height of three hexagonally packed rows of the elongated articles and results in the upper surface of the top row of elongated articles being flush or level with the flange 140. More specifically, the first depth D1 is 5.46 times the radius of one of the elongated articles 150. Given the angled arrangement of the side walls 122, the height of the second step H2 minus the height of the first step H1 is less than twice the radius of one of the elongated articles. Similarly, the container cavity 110 has a second depth D2, which corresponds to the height of the container Hc minus the height of the second step H2.


In one embodiment, the elongated articles 150 to be packaged in the container 100 are flux-coated welding electrodes. As the manufacturing processes for creation of such electrodes provide a relatively consistent product, each specific electrode diameter-length-flux coating combination has a known bulk density. Accordingly, in the case where a desire exists to sell a predetermined, fixed mass of electrodes (as opposed to a fixed number of electrodes), the container 100 is designed to have a cavity 110 configured to accommodate a volume of electrodes substantially equal to the predetermined mass of electrodes divided by the product of about 0.9 times the bulk density of the electrodes. More specifically, the cavity volume 110 may be configured to accommodate a volume of electrodes substantially equal to the predetermined mass of electrodes divided by the product of about 0.9069 times the bulk density of the electrodes, given that the density of a hexagonal lattice in two dimensional space is found by dividing π by the square root of 12, which is approximately to 0.9069. Thus, the filled volume of the cavity 110, or the volume of the cavity actually occupied by electrodes, is the predetermined mass of electrodes divided by the product of about 0.9069 times the bulk density of the electrodes. In one case, the predetermined mass of electrodes may be one kilogram, although a container 100 may be configured to hold other predetermined masses as well.


As the upper surface of the top row of elongated articles 150 is flush or level with the flange 140, a cover 142 is then sealed to the flange 140 and may be sealed to all or a portion of a tab 144. The cover 142 may be formed from a metal foil or laminate metal foil, although other materials, including plastics, may also be employed alone or in combination with the metal foil. Regardless, the cover 142 may be configured to hermetically seal the elongated articles 150 within the container 100 so as to prevent moisture transmission from the ambient environment to the elongated articles. For purposes of this application, a hermetical seal is defined to mean a seal which is airtight, that is, the ambient air does move through the seal. In one case, a vacuum may be drawn in the cavity 110 prior to or contemporaneously with the application of sealing the cover 142 to the flange 140, resulting in vacuum-packaged elongated articles 150. To further prevent the deleterious effects of the ambient environment from entering the sealed container 100, the seal may be chosen to be a material that has extremely low moisture transmissivity, and in certain cases, may have approximately zero moisture transmissivity. As a welder may not use all of the electrodes 150 provided in a container 100 during a single event, a portion of the cover 142 may be selectively resealable to the flange 140. Such an arrangement may permit the welder to peel a portion of the cover 142 from the flange 140, remove one or more electrodes 150, then press the cover back onto the flange, resealing the cover to the flange. To facilitate only partial removal of the cover 142 from the flange 140, it is contemplated that one portion of the cover may be sealed to the flange using a first adhesive, while the portion of the cover configured to be resealable to the flange may be sealed to the flange using a second adhesive, which may be described as a reusable, pressure-sensitive adhesive. Nevertheless, any number and combinations of adhesives or other fasteners may be used to secure the cover 142 to the flange 140.


Optional elongated tab 144 extends away from the container 100 from one of the end walls 124. In one embodiment, the tab 144 may extend directly from the flange 140, although it is also envisioned that the tab may extend directly from an end wall 124 or from a side wall 122. Additionally, an aperture 146 may be formed in the tab 144. In use, the aperture 146 may be passed over a hook or other hanging element for display in a retail environment. Further, a welder may employ the aperture 146 to attach or connect the container 100 to his belt or other place on his person to make access to welding electrodes relatively more convenient as compared to continually returning to a large can or other remote location for additional electrodes during the welding process.


As compared to the embodiment in FIGS. 1-5, in the exemplary embodiment shown in FIGS. 6-9, a container 200 also includes at least one, preferably two or more first steps 230 which extend a height H1 upward from the bottom wall 220, although the first steps 230 have different dimensions than first steps 130. The first steps 230 have a variable length which is equal to the width of the container bottom between one side wall 222 and angled wall 234. Given that the walls 222, 234 angle away from each other, it should be understood that the length of the first steps 230 varies from a relatively shorter length L1 nearer the bottom of the container 200 to a relatively longer length L2 nearer the flange 240, moving upward from the bottom wall 220 as the distance between the walls 222, 234 increases. As best shown in FIG. 6, the first steps 230 may be three steps. The first steps 230 may be spaced or arranged equidistantly along the length of the container 200, although other, asymmetrical arrangements of the steps are also contemplated. The distance between the spaced apart end walls 224 is substantially the same as the length of each of the elongated articles 250. In the embodiment best shown in FIG. 6, the at least one first steps 230 is three steps. The first steps 230 may be spaced or arranged equidistantly along the length of the container 200, although other, asymmetrical arrangements of the steps are also contemplated.


In addition to the first steps 230, the container also includes at least one, preferably two or more, second steps 232. The second steps 232 extend a height H2 upward from the bottom wall 220. Unlike the first steps 230, the second steps 232 have a substantially fixed length L3 which is distance between one of the side walls 222 and the second step angled wall 234 parallel to the side wall. That is, the length L2 is approximately fixed, which is in contrast to the variable length of the first steps 230. In combination, then, the steps 230, 232 may be referred to as means for positioning the articles within the container 200. In one embodiment, at least one of each of the steps 230, 232 may extend directly from at least of the end walls 224. Although the steps 230, 232 are stamped or pressed into the container 200, it is also envisioned that an insert configured to have the same dimensions as the steps may be inserted into an unstamped container prior to filling with electrodes 250. In another embodiment, it is also envisioned that the container 200 may be molded from a plastic material.


As shown in FIGS. 8 and 9, the container cavity 210 has a first depth D1, which corresponds to the height of the container Hc minus the first step height H1. Similarly, the container cavity 210 has a second depth D2, which corresponds to the height of the container Hc minus the height of the second step H2. In the embodiment shown in FIGS. 6-9, the first depth D1 is about 3.7 times the radius of one of the elongated articles 250, which corresponds to the height of three hexagonally packed rows of the elongated articles and results in the upper surface of the top row of elongated articles being flush or level with the flange 240. More specifically, the first depth D1 is 3.73 times the radius of one of the elongated articles 250. Given the angled arrangement of the side walls 222, the height of the second step H2 minus the height of the first step H1 is less than twice the radius of one of the elongated articles. Similarly, the container cavity 210 has a second depth D2, which corresponds to the height of the container Hc minus the height of the second step H2.


In still another exemplary embodiment shown in FIGS. 10-11, a container 300 also includes at least one, preferably two or more, steps 330 which extend a height H2 upward from the bottom wall 320. The steps 330 have a length L3 which is less than the width of the container between the side walls 322. In addition, the steps 332 include a step angled wall 334 which is parallel to one of the side walls 322, which results in the length L3 being substantially the same at each height of the steps 332. That is, the length L3 is approximately fixed or constant. As best shown in FIG. 10, the at least one step 330 is three steps, and the steps 330 may be spaced or arranged equidistantly along the length of the container 300, although other, asymmetrical arrangements of the steps are also contemplated. The steps 330 may be referred to as means for positioning the articles within the container 300. Although the steps 330 are stamped or pressed into the container 300, it is also envisioned that an insert configured to have the same dimensions as the steps may be inserted into an unstamped container prior to filling with electrodes 350. In another embodiment, it is also envisioned that the container 300 may be molded from a plastic material.


As shown in FIG. 11, the container cavity 310 has a first depth D1, which corresponds to the height of the container Hc. Similarly, the container cavity 310 has a second depth D2, which corresponds to the height of the container Hc minus the height of the step H2. The steps 330 may be configured to have dimensions similar to those shown in FIG. 5 or 9, although other configurations may are contemplated depending on the specific electrode diameter-length-flux coating combination and the predetermined mass to be packaged within the container 300.


In still yet another exemplary embodiment shown in FIG. 12, a container 400 is configured in much the same manner as the container shown in FIGS. 1-5, with the at least one first steps 430 and the at least one second steps 432 having the same or similar dimensions as the steps 130, 132 shown in FIGS. 1-5. As compared to the embodiment in FIGS. 1-5, in the exemplary embodiment shown in FIG. 12, the container 400 also includes at least one, preferably two or more first steps 430 which extend a height upward from the bottom wall 420. The first steps 430 have a variable length which is equal to the width of the container bottom between one side wall 422 and angled wall 434. As best shown, the first steps 430 may be two steps. As shown, at least one of the first steps 430 is in contact with side wall 424. Nevertheless, the first steps 430 may be spaced or arranged equidistantly or asymmetrically along the length of the container 400.


As in the case of the embodiment of FIGS. 1-5, the second steps 432 of the embodiment in FIG. 12 extend a height upward from the bottom wall 420. In combination, then, the steps 430, 432 may be referred to as means for positioning the articles within the container 400. As shown, at least one of the steps 432 may extend directly from at least of the end walls 424. Although the steps 430, 432 are stamped or pressed into the container 400, it is also envisioned that an insert configured to have the same dimensions as the steps may be inserted into an unstamped container prior to filling with electrodes. In another embodiment, it is also envisioned that the container 400 may be molded from a plastic material.


While the claimed subject matter of the present application has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the claimed subject matter. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the claimed subject matter without departing from its scope. Therefore, it is intended that the claimed subject matter not be limited to the particular embodiments disclosed, but that the claimed subject matter will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. In combination, plural welding electrodes and a container for holding the plural welding electrodes; the container comprising: a bottom wall having a perimeter;at least one sidewall extending upward from the perimeter of the bottom wall to define a cavity having a first depth in which the plural welding electrodes are received in parallel arrangementat least one first step extending a first height upward from the bottom wall defining a second depth and having a length;the first step extending across the cavity, wherein the length of the first step is less than a width of the bottom wall such that at least one of the plural welding electrodes rests on the first step and is raised above another of the plurality of the welding electrodes by the first height, wherein the length of the at least one first step laterally offsets the one of the plural welding electrodes relative to the second of the plural welding electrodes to form a hexagonal arrangement of the plural welding electrodes.
  • 2. The combination as defined in claim 1, wherein the at least one sidewall is angled outwardly from the bottom wall at a preselected angle.
  • 3. The combination as defined in claim 2, wherein the preselected angle is between about 55 and 65 degrees.
  • 4. The combination as defined in claim 1 further comprising a second step extending from the first step across the cavity, wherein the height of the second step minus the height of the first step is less than twice a radius of one of the plural welding electrodes.
  • 5. The combination as defined in claim 1, wherein the first depth of the container cavity is about 5.5 times a radius of one of the plural welding electrodes.
  • 6. The combination as defined in claim 5, wherein the first depth of the container is 5.46 times the radius of one of the plural welding electrodes.
  • 7. The combination as defined in claim 1, wherein the second depth of the container cavity is about 3.7 times a radius of one of the associated plural welding electrodes.
  • 8. The combination as defined in claim 7, wherein the second depth of the container cavity is 3.73 times the radius of one of the associated plural welding electrodes.
  • 9. The combination as defined in claim 1, wherein the distance between the spaced apart end walls is substantially the same as a length of each of the plural welding electrodes.
  • 10. The combination as defined in claim 1, wherein a filled volume of the container is substantially equal to a predetermined mass of the plural welding electrodes divided by the product of about 0.9 times a bulk density of the plural welding electrodes.
  • 11. The combination as defined in claim 1 further comprising a flange defining an upper perimeter of the container and extending from the an upper edge of the at least one sidewall.
  • 12. The combination as defined in claim 11 further comprising a cover sealed to the flange.
  • 13. The combination as defined in claim 12, wherein the cover is hermetically sealed to the flange.
  • 14. The combination as defined in claim 1, wherein the at least one first step is formed integrally with the container.
  • 15. The combination as defined in claim 1 further comprising a tab extending away from the container from one of the end walls.
  • 16. In combination, plural welding electrodes and a container, the container comprising: a bottom wall having a perimeter;a pair of spaced apart side walls extending upwardly from perimeter of the bottom wall;a pair of spaced apart end walls extending upwardly from the perimeter of the bottom wall between the sidewalls;wherein said walls define a cavity that receives the plural welding electrodes in a parallel relationship to each othera plurality of longitudinally spaced apart steps between said pair of spaced apart end walls and each step extending a same height upward from the bottom wall and each step having a same length;wherein the length is less than the width of the container between the sidewalls;wherein one of the plural welding electrodes is supported on the pair of longitudinally spaced apart steps above another of the plural welding electrodes, wherein the length of the at least one first step laterally offsets the one of the plural welding electrodes relative to the second of the plural welding electrodes to form a hexagonal arrangement of the plural welding electrodes.
  • 17. The combination as defined in claim 16, wherein the spaced apart sidewalls are angled outwardly from the bottom wall at an angle of about 55 to 65 degrees.
  • 18. In combination, plural welding electrodes and a container for holding the plural welding electrodes, the container comprising: a bottom wall having a perimeter; a pair of spaced apart side walls extending upwardly from perimeter of the bottom wall at an angle;a pair of spaced apart end walls extending upwardly from the perimeter of the bottom wall between the sidewalls the walls defining a cavity that receives the plural welding electrodes in a parallel and adjacent relationship;means for positioning one of the plural welding electrodes at a height above of the plural welding electrode within the container; andwherein the means for positioning has a length less than the width of the bottom wall, wherein the length laterally offsets the one of the plural welding electrodes relative to the second of the plural welding electrodes to form a hexagonal arrangement of the plural welding electrodes.
  • 19. The combination as defined in claim 18, wherein the means for positioning are integral in the container.
  • 20. The combination of claim 1, wherein the at least one sidewall includes a pair of parallel opposed longitudinal sidewalls extending outward relative to the bottom wall at a combined angle of about 60°.
US Referenced Citations (53)
Number Name Date Kind
179035 Leland Jun 1876 A
1320757 Hothersall Nov 1919 A
1432968 Conley Oct 1922 A
2114052 Kincade, Jr. Apr 1938 A
2759656 Abrams Aug 1956 A
2878128 Jorgenson Mar 1959 A
3151800 Griese, Jr. Oct 1964 A
3207415 Schechter Sep 1965 A
3391847 Christine et al. Jul 1968 A
3441165 Zampichelli Apr 1969 A
3488201 Pizarro Jan 1970 A
3690504 Ragettli Sep 1972 A
3783071 Monks Jan 1974 A
3799389 Bloeck Mar 1974 A
3829003 Dilot Aug 1974 A
3866820 Zumsteg et al. Feb 1975 A
3890448 Ito et al. Jun 1975 A
3892058 Komatsu et al. Jul 1975 A
3946871 Sturm Mar 1976 A
3946872 Sturm Mar 1976 A
4005776 Seeley Feb 1977 A
4094460 Scanga et al. Jun 1978 A
4266669 Watson May 1981 A
4338378 Nabeta et al. Jul 1982 A
4474727 Kmonk et al. Oct 1984 A
4645079 Hill Feb 1987 A
4801041 Takata et al. Jan 1989 A
4915289 Hatano et al. Apr 1990 A
4917245 Wu Apr 1990 A
5022551 Hexel Jun 1991 A
5098751 Tamura et al. Mar 1992 A
5100021 Mussi et al. Mar 1992 A
5116651 Katsura et al. May 1992 A
5167339 Takata et al. Dec 1992 A
5176258 Antal Jan 1993 A
5178293 Suzuki et al. Jan 1993 A
5379895 Foslien Jan 1995 A
5613617 Da Vitoria Lobo Mar 1997 A
5634567 Hekal Jun 1997 A
5755326 O'Neill May 1998 A
5873218 Kendig Feb 1999 A
6302271 Grant Oct 2001 B1
6896141 McMichael et al. May 2005 B2
7854323 Weissbrod Dec 2010 B2
8083058 Marcinkowski et al. Dec 2011 B2
20050145630 Williams et al. Jul 2005 A1
20050252918 McKnight et al. Nov 2005 A1
20080202976 Burgess et al. Aug 2008 A1
20090021937 Sloan et al. Jan 2009 A1
20100018882 St. Charles Jan 2010 A1
20100018883 Patel Jan 2010 A1
20100251672 Weissbrod Oct 2010 A1
20100307942 Tomes et al. Dec 2010 A1
Foreign Referenced Citations (11)
Number Date Country
2706406 Jun 2005 CN
7923976 Nov 1979 DE
0169154 Jan 1986 EP
0362020 Apr 1990 EP
1801024 Jun 2007 EP
1938951 Jul 2008 EP
1082083 Sep 1967 GB
1110674 Apr 1968 GB
1179295 Jan 1970 GB
2002179144 Jun 2002 JP
2008095262 Aug 2008 WO
Non-Patent Literature Citations (2)
Entry
International Search Report for PCT/IB2012/001764 dated Apr. 4, 2013.
Written Opinion of the ISA for PCT/IB2012/001764 dated Apr. 4, 2013.
Related Publications (1)
Number Date Country
20130062229 A1 Mar 2013 US