The present invention relates to receptacles for operating fluids of a motor vehicle, comprising at least one container and a heat exchanger unit outside the container, which heat exchanger unit is connected to an external heat source or heat sink. The operating fluid can be a liquid, a paste-like material or free-flowing granules.
Modern motor vehicles with removal of nitrogen oxide from the exhaust gases of an internal combustion engine or alternative, in particular hybrid, drives require storage containers for an operating agent. Such operating agents are, for example, animal fats, rape oils or hydrides. To ensure optimum effectiveness, these operating agents are temperature-controlled. To this end, a heating or cooling system must be provided.
In the prior art, such containers are fitted with separate heat exchanger units which are either housed inside the container or situated outside the container and which are connected to the inside of the container via tubing. However, it is time- and cost-consuming to manufacture the former and time- and cost-consuming to install the latter, with the latter also being bulky. This expenditure is all the more objectionable in that, as a rule, only relatively small quantities of heat have to be supplied or discharged.
Thus, the problem to be solved by the present invention is to design a receptacle of the type described in such a manner that it can be manufactured and installed easily and inexpensively, including in mass production, while ensuring that it fully performs its intended function. According to the present invention, this is made possible in that the heat exchanger unit is formed by two half-shells which lie against the container wall and which have an inside and an outside wall, between which walls at least one flow channel for a heat carrier medium is formed. The container can be conventionally designed without any built-in components. All that is necessary is to provide one half-shell on each side. Since half-shells do not entail any tolerance problems, it is possible to easily retrofit the heat exchanger unit. The use of half-shells ensures a large-surface and consequently uniform heat transfer. The two half-shells can be easily manufactured and installed.
In one embodiment of the present invention, the edges of the half-shells are connected to one another. To this end, in an especially simple variant, these edges are crimped outward, and the edges of the two half-shells that face each other engage in a rail which holds them together. In an advanced embodiment of this variant, at least one rail is divided along its longitudinal direction into two rail portions which are detachably connected to each other. This ensures an especially easy installation and deinstallation.
The half-shells can be made of a sheet metal material or an extruded profile. Depending on the circumstances and the number of pieces to be manufactured, one or the other embodiment is to be preferred. In the first embodiment, the half-shells are formed by an inner sheet metal panel and an outer sheet metal panel, with the inner sheet metal panel lying against the wall of the container in a thermally conductive manner and with the outer sheet metal panel having convexities that form the flow channel or flow channels and being sealingly connected between the convexities with the inner sheet metal panel. This embodiment can be produced inexpensively since only the outer sheet metal panel needs to be deep-drawn and since the two shells are identical.
The two sheet metal panels can be connected by welding or gluing. In an advanced embodiment of this variant, the outer sheet metal panel has pipe sockets for supplying and discharging the heat carrier medium.
With a slight additional expenditure, the half-shells can be designed so as to largely enclose two, or even a plurality of, containers that are arranged parallel to one another in the same manner.
In the second embodiment, the half-shells are double-walled extruded profiles, the two walls of which are connected to each other by means of a number of joining strips which extend in the longitudinal direction (=direction of extrusion) and which form the flow channel or flow channels. Owing to the joining strip walls, the extruded profile can be cut off at right angles relative to the direction of extrusion and installed without requiring any other action. A lid is attached along the cut faces. This lid can be designed to ensure that it connects the individual flow channels to one another in any manner desired.
In a useful advanced embodiment of the present invention, individual joining strip walls can be shortened, for example, by means of milling, so as to connect the flow between neighboring flow channels. The lid can be a simple plane plate to which pipe sockets are to be attached so as to provide a connection for supplying and discharging a heat carrier medium.
In addition, the lid can engage in the cut face of the two half-shells so as to interlock and thus establish the connection between the paired half-shells. Lastly, the lid can be reduced to a closed ring, the contour of which follows the contour of the two half-shells.
This embodiment is especially recommended for grouping a plurality of containers in one receptacle. To this end, the outside wall of the extruded profile can form a plane subsurface, with the plane subsurfaces of the half-shells of a plurality of containers lying against either the subsurface of a neighboring container or a housing of the receptacle. In this case, the hollow spaces between the individual containers can be filled with an insulating material.
The present invention will be explained below with reference to the accompanying drawings. As can be seen:
a shows a cross section through a variant of
b show a variant of the connection of the half-shells shown in
In
For attachment to the container 1, the longitudinal edges 15, 16 of the half-shells 7, 8 are crimped or chamfered outwardly in the shape of a U. The longitudinal edges 15, 16 that face each other engage by way of a longitudinal slit 19 in the longitudinal grooves 18 of a rail 17. In this case, the rail 17 is an extruded profile. The longitudinal edges 20, 21 on the other side of the container 1 can be held together by a rail 22 that is identical to rail 17. In this case, however, the rail 22, in the longitudinal direction, is divided into two subrails 24 which are tensioned relative to each other by thread bolts 23. This facilitates the installation of the half-shells 7, 8 and ensures that they are tightly seated on the container.
In the variant according to
b shows an alternative embodiment for connecting the longitudinal edges 20, 21 of the half-shells 7, 8. In this embodiment, the longitudinal edges 20, 21 sit close to each other and are jointly penetrated by locking hooks 25 of a first locking rail 26, which locking hooks can interlock in the slits 27 of a second locking rail 28 that can be moved in the direction of arrow P.
In the second embodiment according to
In the longitudinal section shown in
In
The invention is not limited to the practical examples described, but comprises all variants and modifications that fall within the scope of the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
A 2000/2009 | Dec 2009 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AT10/00429 | 11/9/2010 | WO | 00 | 6/13/2012 |