The invention relates to a container for fluids, in particular liquids, such as beer or water, comprising an outer casing, preferably spheroid and preferably made of a rigid material, a gas and/or liquid tight inner casing of a flexible material located inside the outer casing, a valve part for filling the container with a fluid, and at least one vent via which the inside of the outer casing communicates with the outside at least during filling. The invention also pertains to an insert to be mounted on or in an outer casing to form a container and to a method of filling a container.
EP 862 535 discloses a container for fluids comprising an outer and preferably ellipsoid casing of a flexible, pressure resistant material, a gastight inner casing of flexible material located inside the outer casing, and a filling connection for filling the inner casing.
US 2004/0050863 relates to a collapsible bag for dispensing liquids which includes at least one sheet sealed to define an enclosure and a fitment (spout) attached to the enclosure and out through which liquid in the enclosure is dispensed. An interior surface of the one or more sheets has an integral texture to assist with withdrawal of the liquid from the enclosure when collapsed.
WO 00/78665 relates to a beer container comprising an inner hollow shell (11) of blow moulded PET to hold beer, an outer hollow shell (12) of moulded high density polyethylene enclosing and supporting the inner shell and a spear structure (13) including a dispenser tube (14) extending from a bottom interior region of the inner shell (11) through to a dispensing outlet (16) at the top of the outer shell (12).
EP 389 191 relates to a container for transport, storage and dispensing of beverages, such as beer, comprising an outer container (12) of plastics such as PET, and an inner bag (20) of flexible material, such as layered polyethylene.
It is an object of the present invention to provide an improved container.
To this end, the container according to the invention is characterized by one or more spacers located between the inner casing and the outer casing and providing one or more venting paths at least during filling. It is preferred that the spacers are elongated elements, in particular strips or filaments, or protrusions on the outer wall of the inner casing and/or on the inner wall of the outer casing. It is further preferred that the vent is located in the valve part and that the spacers are attached to or extend to the valve part and/or that the spacers extend or are at least sufficiently long to be able to extend from the vent to at least halfway the outer casing, also when the inner casing is filled with the fluid.
The spacers facilitate significantly faster and more complete filling of the inner casing and/or render the process of filling the inner casing more robust.
The invention further relates to an insert to be mounted on or in an outer casing to form a container as described above, comprising a valve part provided with at least one vent, an inner casing attached to the valve part, and characterized by one or more spacers attached to or integrated with the valve part and/or the outer surface of the inner casing.
It is preferred that the inner casing is folded and is held together by means of a rupture element, in particular a wire, strap or sleeve, preferably made of paper.
The invention also relates to a method of filling a container as described above with a fluid, in particular a liquid, such as beer, comprising the steps of
supplying a pressurized gas between the inner and outer casings,
supplying a liquid to the inner casing while the valve part is facing downwards, thus displacing the gas along the spacers and through the vent(s).
Within the framework of the present invention the term “spheroid” includes any shape generated by a half-revolution of a circle or a square or rectangle with rounded corners or an ellipse or oval about its major axis or minor axis.
The invention will now be explained in more detail with reference to the drawings, which show a preferred embodiment of the present invention.
The drawings are not necessarily to scale and details, which are not necessary for understanding the present invention, may have been omitted. Further, elements that are at least substantially identical or that perform an at least substantially identical function are denoted by the same numeral.
In this example, the outer casing 2 was made by blow-moulding a polyester preform, such as a PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) preform. The upper rim 7 (
Alternatively, the outer casing may be made of e.g. a relatively thick-walled thermoplastic material or even a metal, such as aluminum. As another example, the outer casing is collapsible and made from a blow-molded thermoplastic e.g. PE or a elastomeric liner provided with a filament wound outer reinforcement and an outer layer of latex obtained by immersing the liner (with filaments) in a latex bath. Yet other suitable casings are described in, for example, EP 0 626 338, which is incorporated herein by reference.
As shown in
When a probe of a filling unit or a dispense head is pushed into the valve part 5, the inner jacket 11 slides with respect to the outer jacket 10 providing one or more vents for de-aerating the space between the outer and inner casings 2, 4 during filling respectively letting in pressurized gas to expel liquid from the inner casing 4. Further, the closing element 12 slides with respect to the inner jacket 11 providing an opening for letting the liquid in respectively out. As shown in more detail in
The inner wall of the outer jacket 10 comprises one or more, in this example two, annular and downwardly tapering counter-ledges 14 (
In order to evenly distribute the tension in the upper rim 7 resulting from pressure inside the outer casing 2, the cross-sectional area (A1;
The inner casing 3 comprises two, in this example polygonal, flexible sheets of a gas and liquid tight laminate, preferably a laminate comprising a sealing layer (e.g., PE or PP), a barrier layer (e.g. aluminum) and one or more further layers (e.g. PA and/or PET), sealed together along their edges, e.g. by means of welding. As shown in
The present container is especially suitable for relatively large volumes, i.e. 10 liters or more, preferably 17.5 liters or more. It was found that installing the valve part and the inner casing on the one hand and filling of the container on the other is facilitated considerably if the inner diameter of the central opening (D1;
As the (empty) containers according the present invention typically weigh less than 1.5 kilograms, a container having a maximum total weight of e.g. 23 kilogram still has a capacity of 21.5 kilograms (˜litres) of liquid. In comparison, an empty metal keg having a capacity of 21.5 kilograms of liquid would weigh at least 8 kilograms, yielding a total of approximately 30 kilograms.
In accordance with a further aspect of the present invention, one or more spacers, in this example two strips 16 provided with a plurality of longitudinal ridges 17, are attached to the valve part 5 and extend between the inner casing 4 and the outer casing 2. The spacers facilitate significantly faster and more complete filling of the inner casing and/or render the process of filling the inner casing more robust.
To prevent detrimental interaction between the spacers and the inner casing, it is preferred that the spacers are detached from the inner casing, i.e. not welded or glued to or formed in the wall of the inner casing, as such welding, gluing or forming may affect the said wall, e.g. reduce its barrier properties and allow gas or liquid to escape.
Filling of the container according to the present invention with a fluid, in particular a liquid, such as beer, is typically carried out by
placing the container upside down, i.e. with the valve part facing downwards,
pushing a filling probe into the valve part, thus establishing fluid communication between the (lumen of the) inner casing and a pump for the fluid, and
supplying a liquid to the inner casing, preferably at a flow rate of more than 1 liter per second, e.g. 2 liters per second, thus displacing the gas along the spacers and through the vent(s).
If the fluid is a carbonated liquid, a pressurized gas is supplied between the inner and outer casings prior to filling the inner casing in order to prevent the carbon dioxide from escaping and causing the liquid to foam.
Further, the bottom of the outer jacket is delimited by a raised edge which extends beyond the circumference of the folded inner casing and which, when the valve part is mounted on the outer casing, extends in the opening of the outer casing, thus preventing the inner casing from becoming jammed between the jacket and outer casing.
The inserts can be readily inserted in and snap fitted to an outer casing, with minimal risk of causing damage to the inner casing. During filling, the expanding inner casing will cause the sleeve or strap to rupture, allowing it to fully deploy.
The invention is not restricted to the above-described embodiments which can be varied in a number of ways within the scope of the claims. For instance, other types of valves, e.g. screwed instead of snap fitted, can be used. Further, the container according to the present invention is in principle also suitable for holding pressurised gasses, for instance medical gasses or industrial gasses, such as LPG or natural gas.
Number | Date | Country | Kind |
---|---|---|---|
06116211.1 | Jun 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/055235 | 5/30/2007 | WO | 00 | 12/30/2009 |