The present invention relates to a container for special materials, which is particularly suitable for stocking materials which may flare up or deteriorate under high temperatures in geographic areas marked by particularly hot climates.
As known, bulky, block-shaped containers made of metal are used in humanitarian missions or missions of civil protection for stocking equipment of various types in support of the mission. The containers are usually parked at a certain distance from the base prepared for the mission, in squares or open fields. When the mission takes place in areas marked by particularly hot climates, e.g., in desert areas or tropical areas, the temperature within the container may rise up to 70-80° C. This circumstance may cause any perishable material stocked within the container to damage, such as food, medicines, machines requiring a suitable ventilation (e.g., power units), etc., and may also be very dangerous when inflammable/explosive materials are stocked within the container, such as fuels (e.g., for supplying the above-cited power units), munitions, and the like.
Although it is theoretically possible to cool the containers by conventional conditioning plants, this solution is not taken into consideration because the containers are often abandoned, even for very long periods, in non-equipped areas where they are exposed to the inclemency of the weather and to extreme climatic conditions, while the above conditioning plants require constant check and regular maintenance, so that they have not the required operative autonomy.
Therefore, it is a main object of the present invention to provide a container for special materials, which is provided with a both effective and safe cooling system having a high operative autonomy.
The above object and other advantages, which will better appear from the following description, are achieved by a container having the features recited in claim 1, while the dependent claims state other advantageous, though secondary features of the invention.
The invention will be now described in more detail with reference to a preferred, non-exclusive embodiment shown by way of non-limiting example in the attached drawings, wherein:
A block-shaped container 10 is shown in the Figures, which has a trestle-type frame comprising longitudinal members such as 12, cross members such as 14, uprights such as 16, and oblique stiffening beams such as 18, 20 on both its sides. Panels are internally anchored to the trestle-type frame and are interconnected to form two side walls 22, 24, one of which, 24, is provided with a door 25, a front wall 26 and a rear wall 28, a bottom wall 30, as well as a roof 32 for the container. In particular, the panels forming the roof of the container are hinged and attached to the frame by means of a rivet-based connection which is designed to give way when a predetermined pressure threshold is reached due to an explosion in the container, whereby a preferential way out is provided. Rear wall 28 of the container has an opening provided with an outer door 33a, which is made of ballistic steel, is mounted on hinges and has functions of insulation, containment of explosions and protection against intrusions, as well as with a couple of inner sliding doors 33b which have functions of internal inspection and check without requiring to open the doors (
As shown in detail in
The container houses a cooling device comprising a block-shaped compartment 42 made of sheet steel, which is anchored adjacent to a side wall of the container and to the bottom, with a vertical, front wall 44 facing the inside of the container, two closed side walls such as 50, and a closed upper face 56. A lower window 58 and an upper window 60 closed by respective, openable shutters 58a, 60a are formed on front wall 44 near its opposite vertical ends. A lower window 62 and an upper window 64 closed by respective openable shutters 62a, 64a and open to the inside of compartment 42 are formed on that side wall 24 of the container to which the cooling device is anchored, substantially at the same level of the lower window and the upper window on vertical front wall 44 respectively. The shutters of both inner windows 58, 60 and outer windows 62, 64 are electrically driven to automatically open/close by a programmable control unit C arranged on front wall 44 of the compartment (
A mass 66 of Phase Change Material (PCM), such as a salt-based material, is supported within compartment 42. Mass 66 is preferably stored in rigid containers which are arranged side-by-side in order to be licked by the air flowing through the compartment with heat exchange, as will be described in more detail below. The mass is arranged between the upper windows and the lower windows, thereby dividing compartment 42 into a lower chamber 68 served by the lower windows, and an upper chamber 70 served by the upper windows. The two chambers are in communication with each other via the gap defined between the inner wall of compartment 42 and mass 66. Fans such as 72 are arranged in compartment 42 to force the air circulation through the compartment and, consequently, the heat exchange from lower chamber 68 to upper chamber 70.
The electrical devices, such as control unit C and fan 72, are supplied by a solar panel 74 installed on roof 32 of the container (
In the day operation, as shown in
In the night operation, as shown in
The above operative steps repeat cyclically, whereby a cooling system having a high autonomy is provided. Furthermore, as a person skilled in the art will immediately understand, the structure of the container according to the invention optimizes both the structural strength and the insulating properties of the container, because the supporting function is performed by the frame while the functions of mechanical protection and insulation is performed by the panels anchored to the inside of the frame.
A preferred embodiment of the invention has been described herein, but of course many changes may be made by a person skilled in the art within the scope of the claims. In particular, PCM materials different from those indicated by way of example in the above-described, preferred embodiment, may be used, e.g., paraffin-based materials. Furthermore, the electrical devices, such as the fans and the control unit, can be supplied by means different from those described, e.g., rechargeable batteries may be used in lieu of, or in addition to, the solar panels; the container could also be connected to a power supply, if present. Nevertheless, the air could also flow in the compartment in the opposite direction, i.e., from the top to the bottom, by reversing the operation of the fans. Furthermore, although the fans are useful to enhance the circulation of the air within the compartment, as the person skilled in the art will immediately understand, the air would circulate by “chimney-like” effect even without the fans. Therefore, the fans should be intended as useful but unessential to achieve the invention. The shape and the arrangement of the cooling device within the container could also be different from what shown, and, depending on the circumstances, the container could also be provided with a higher number of cooling devices. Moreover, depending on the circumstances, the cork-containing paint and the cork sheets applied to the panels forming the walls of the container could be unessential, or only one of the faces of the panels could be coated.
Number | Date | Country | Kind |
---|---|---|---|
TO2008A000415 | May 2008 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/002919 | 4/22/2009 | WO | 00 | 11/22/2010 |