This application claims the benefit of priority of European Patent Application No. 13185243.6, filed Sep. 19, 2013, which is incorporated herein by reference.
The present invention relates to a machine and a method for handling containers, such as for example plastic bottles.
More specifically, the present invention relates to a machine and a method for labelling and transforming filled and closed containers.
The present invention is advantageously but not exclusively applicable in the sector of plastic hot fill containers, which the following description will refer to, although this is in no way intended to limit the scope of protection as defined by the accompanying claims.
As known, the containers of the above mentioned type, after having been filled with hot—for example at about 85° C.—pourable products or liquids, are first subjected to a capping operation and then cooled so as to return to a room temperature. By effect of the capping operation, the heated air present in the top portion (“head space”) of the container expands causing a stress tending to produce a general swelling of the container at the side wall and at the base wall.
The following cooling to which the container is subjected, causes, vice versa, a reduction of the volume of air and minimally of the liquid product contained in the container; a depression is therefore created, which tends to pull the side walls and the base wall of the container inwards. This may determine deformations in the walls of the container if these are not rigid enough to resist the action of the above disclosed stresses.
In order to contain the depressive stresses generated during the cooling of the product within the containers without generating undesired deformations on the containers, they are typically provided, at the side wall, with a series of vertical panels, known as “vacuum panels”. These panels, in the presence of depressive stresses, are deformed inwardly of the container allowing it to resist to the hot fill process without generating undesired deformations in other areas of the container.
Likewise, the known containers intended to be subjected to a hot fill process can also have an optimised lower portion or base adapted to be deformed upwards under the action of the depressive stresses.
Even though the disclosed solutions allow to “relieve” the pressure stresses on specific parts of the containers, i.e. the vertical vacuum panels or the base, thus avoiding the occurrence of undesired deformations in other parts of the containers, they do not allow the cancellation of the above said stresses; in other words, the containers remain in any case subject to internal depressive stresses and must therefore be provided with a structure capable of resisting such stresses.
Patent application WO2006/068511 shows a container having a deformable base, which can have two different configurations: a first unstable configuration, in which this base has a central area projecting downwards with respect to the outermost annular area immediately adjacent thereto, and a second stable configuration, in which the central area is retracted inwardly of the container, i.e. it is arranged in a higher position with respect to the adjacent annular area.
Following the filling with the hot pourable product, the base of the container has the first unstable configuration and must be supported by a special cup element to which it is coupled. Thereby, the downward deformation of the base of the container can be maximised without compromising the stable support of the container, since such a support is provided by the cup element. Following the cooling, the base can be displaced by an external action, for example a vertical thrust upwards performed by a rod or plunger, in the second stable configuration with the subsequent possibility of removing the cup element.
The displacement of the base of the container from the first to the second configuration determines a considerable reduction of the containment volume of the container, much higher than would be obtained in the known containers simply by the deformation of the base by the effect of the sole depressive stresses; the final effect is therefore substantially the cancellation of the depressive stresses acting on the inside of the container.
The applicant has observed that this kind of operation may become quite critical, in particular when the time necessary to perform the deformation of the base of the container has to be strongly limited or reduced, for instance due to production constraints; in such cases, the plastic material may return at least in part towards the original first configuration after release of the plunger; this normally occurs when the plastic material has a reaction time exceeding the time for performing the operation of deformation.
The non-correctly formed containers have therefore to be rejected at the end of the production line.
Another problem posed in connection with the described containers is the complexity of the plant layout for producing them. In particular, the disclosed containers must be subjected to the following operations to achieve their final shape:
As it is known, the filling machines, the capping machines and the labelling machines are generally rotating machines, in which the containers are fed on respective carousels. In particular, each carousel is provided with a plurality of operative units for receiving and processing the containers, uniformly distributed about the rotation axis of the carousel; more precisely, each operative unit is commonly provided with an element for supporting the relative container which maintains it in a predetermined position for carrying out the specific operation/s.
As can be easily noted, the process for the production of the above said finished containers is rather time-consuming and requires considerable room within the relative plants; in order to carry out the different operations indicated, it is necessary to provide a relatively high number of machines and conveyors adapted to transfer the containers from a machine to another.
A further problem posed in connection with the above-described containers is the correct application of the labels on the designated surfaces of such containers. In particular, in order to be applied in a correct way, a label requires a receiving surface having a well-defined geometry as well as a sufficient rigidity. This second feature of the receiving surface is particularly important for self-stick labels or pressure-sensitive labels.
It is therefore an object of the present invention to find a simple and cost-effective solution to solve at least one of the above described problems.
This object is achieved by a container handling machine in accordance with at least some embodiments in the present application.
The present invention further relates to a container handling method in accordance with at least some embodiments in the present application.
A preferred embodiment is hereinafter disclosed for a better understanding of the present invention, by mere way of non-limitative example and with reference to the accompanying drawings, in which:
With reference to
Machine 1 essentially comprises a support structure 4 (only partially visible in
Carousel 5 receives a sequence of bottles 3 to be labelled by an inlet star wheel 6, which cooperates with carousel 5 at a first transfer station 7 and is mounted to rotate about a respective longitudinal axis B parallel to axis A.
Carousel 5 also receives a sequence of rectangular or square labels 2 from a labelling unit 8 (known per se and only diagrammatically shown), which cooperates with carousel 5 at a second transfer station 9.
Carousel 5 releases a sequence of labelled bottles 3 to an outlet star wheel 10, which cooperates with carousel 5 at a third transfer station 11 and is mounted to rotate about a respective longitudinal axis C parallel to axes A and B.
As may be seen in detail in
In the case shown, base 12 has an annular area 15 having axis D, radially external and defining an annular resting surface of relative bottle 3, and a central recessed area 16, surrounded by annular area 15 and arranged normally higher along axis D with respect to annular area 15 in a vertical position of bottle 3, i.e. with neck 13 placed above base 12; in other words, central area 16 is arranged at a distance from neck 13 along axis D smaller than the distance between neck 13 and annular area 15.
Base 12 is deformable and can have two different configurations, shown in
Bottles 3 are fed to carousel 5 in a condition in which they have been filled with the pourable product, normally a liquid food product, and closed, at neck 13, with a relative closing device or cap 17.
In the case shown, bottles 3 are fed to carousel 5 after having been hot filled and subjected to a cooling operation. Base 12 is therefore arranged in the first configuration, i.e. it is deformed and swollen downwards, and within bottle 3 there are depressive stresses which tend to displace base 12 towards the second configuration.
As clearly visible in
Bottles 3 reach carousel 5 in a vertical position, i.e. with base 12 arranged on the bottom with respect to neck 13 and to cap 17 and with axis D parallel to axes A, B and C.
Bottles 3 are released to outlet star wheel 10 with base 12 in the second configuration, which corresponds to the desired final configuration.
In particular, in the second configuration (
Carousel 5 comprises a plurality of operative units 18 (only one of which shown in detail in
Operative units 18 are displaced by carousel 5 along a circular processing path P which extends about axis A and through transfer stations 7, 9 and 11. In particular, by considering path P (
As may be seen in
Each operative unit 18 is adapted to receive a relative bottle 3 in a vertical position, i.e. having its axis D coaxial to relative axis E with neck 13 placed above base 12, and to retain this bottle 3 in the above said position along path P from transfer station 7 to transfer station 11.
Since operative units 18 are identical to one another, only one will be disclosed in detail hereinafter for clarity and simplicity; it is evident that the features that will hereinafter disclosed are common to all operative units 18.
In particular, operative unit 18 comprises, above rotating table 19, a support element 21 adapted to define a horizontal support for base 12 of a relative bottle 3. In greater detail, support element 21 comprises a plate 22 extending orthogonally to axis E and having, on top, a horizontal resting surface 23 for supporting base 12 of relative bottle 3. In practice, annular area 15 is the only part of bottle 3 contacting resting surface 23, being central area 16 retracted along axis D with respect to annular area 15 in both first and second configuration of base 12.
As can be seen in
Support element 21 is also fixed to a rotating member 25 of a relative electric motor 26, so as to be rotated about axis E when relative bottle 3 receives a label 2 from labelling unit 8.
In particular, electric motor 26 comprises a hollow cylindrical stator 27, protrudingly fixed to the lower side of rotating table 19 about hole 20 and coaxially thereto; more precisely, stator 27 has a top end 27a fixed to a lower face of rotating table 19 and protrudes on the lower side of rotating table 19.
Rotating member 25, also cylindrical and hollow, is mounted for the most part within stator 27 and projects on top therefrom so as to engage coaxially and pass through hole 20 of rotating table 19 of carousel 5. Rotating member 25 is mounted rotatingly about axis E with respect to stator 27 and to rotating table 19; in other words, rotating member 19 rotatingly engages hole 20 of rotating table 19.
Support element 21 finally protrudes from the top of rotating member 25.
Plate 22 of support element 21 has a through opening 28 coaxial to axis E, and operative unit 18 also comprises a plunger 29, borne by rotating table 19 of carousel 5 on the opposite side of support element 21 with respect to bottle 3, which is selectively displaceable along axis E, with respect to support element 21, to act, through opening 28, on base 12 of relative bottle 3 and deform it from the first to the second configuration.
In particular, plunger 29 has a substantially cylindrical main portion 30, which axially and slidingly engages a central through-hole 32 having axis E of rotating member 25 and is selectively displaceable between a first resting position, in which it is spaced from base 12 of bottle 3 borne by support element 21, and a second operative position, in which it engages opening 28 of support element 21 and cooperates with base 12 of bottle 3 to deform it from the first to the second configuration.
Preferably, plunger 29 is axially coupled to a piston 33 of a fluidic actuator assembly 34, for example of the pneumatic type.
According to another possible variant (not shown), plunger 29 may be coupled to, or be defined, by a linear motion mobile member.
According to another possible variant (not shown), plunger 29 may be driven by an electric motor coupled with a worm screw.
Actuator assembly 34 is arranged on the opposite side of electric motor 26 with respect to support element 21.
In the case shown, actuator assembly 34 comprises an outer housing 35 which protrudes by means of a flanged sleeve 36 to a lower end 27b of stator 27, opposite to end 27a and provided with a through hole 27c.
Piston 33 is partially engaged in a sliding manner along axis E in housing 35 and projects on top therefrom with an end portion coupled to plunger 29.
Preferably, plunger 29 is axially coupled to piston 33 so that they can move as one single piece along axis E, and is rotationally free with respect to piston 33 so that any rotational movement impressed by rotating element 25 to plunger 29 is not transmitted to piston 33.
As may be seen in
Shaped head 37 of plunger 29 advantageously has:
In other words, protrusion 37a fully reproduces the profile of indentation 16a in negative so as to perfectly match with it when protrusion 37a and indentation 16a are coupled to one another for centering the relative bottle 3 along axis E prior to start deformation of base 12. In a completely analogous manner, even interacting surface 37b fully reproduces in negative the profile of the surface 16c of the recess 14 to be obtained during deformation of base 12; this particular profile of interacting surface 37b permits to aid and improve deformation of the base 12 of each bottle 3 so as to avoid any possible partial return of plastic material to initial condition.
As it appears from
It should be noted that, in the first position of plunger 29 (
In the second position of plunger 29, protrusion 37a of head 37 is coupled and matches with indentation 16a of base 12 of the relative bottle 3, and interacting surface 37b is coupled and matches with surface 16c of recess 14 of the base 12 in the second configuration.
The applicant has observed that the stroke or displacement of plunger 29 from its first to second position can be varied to obtain different deformations of bases 12 of bottles 3 so as to produce given increases of the internal pressures of the closed bottles 3 along with consequent increases of the rigidity of the outer surfaces of the bottles 3 designed to receive labels 2.
The graph of
In particular, the applicant has observed that, in order to obtain a sufficient rigidity of the outer surface of a bottle 3 to perform labelling, head 37 of plunger 12 in its second position has to protrude from resting surface 23 of a quantity along axis E ranging between 22 mm (X1, see
In
To sum up, in the disclosed configurations of operative unit 18, stator 27, rotating member 25, support element 21, actuator assembly 34 and plunger 29 move with rotating table 19 about axis A.
As shown in
Finally, plunger 29 and piston 33 can translate along axis E with respect to the other components of operative unit 18.
Preferably, operative unit 18 also comprises sensor means 40 adapted to detect the displacement along axis E performed by plunger 29 to bring base 12 of relative bottle 3 from the first configuration to the second configuration.
In the case shown, sensor means 40 comprise a position transducer 41 (known per se) adapted to detect the position of piston 33 during its movements; in practice, position transducer 41 generates an outlet signal correlated to the position taken by piston 33. On the basis of the position of piston 33 before and at the end of the interaction stroke with base 12 of relative bottle 3, the extent of the displacement of piston 33 and therefore of plunger 29 can be determined. By monitoring the displacement of plunger 29 during every action on bottles 3, it is possible to detect by how much this measured displacement differs from a range of desired values; this measure allows to indirectly perform a quality control of bottle 3.
In
Also in this case, cam 44 is arranged on the opposite side of electric motor 26 with respect to support element 21.
In particular, cam 44 is fixed to support structure 4, extends about axis A at the periphery of carousel 5 and cooperates, along a lower side thereof, with rollers 43 of plungers 29 of operative units 18. More precisely, cam 44 extends parallel to path P and has an operative portion 45 configured so as to determine the displacement of each plunger 29 from the first position to the second position and vice versa. Operative portion 45 is placed in a predetermined angular position with reference to axis A.
Roller 43 of each operative unit 18 is engaged in a sliding manner on a bracket 46 protruding on the lower side, by means of relative sleeve 36, from lower end 27b of relative stator 27 and extending parallel to relative axis E; a cylindrical helical spring 47 is wound about a lower end of relative bracket 46 and cooperates with relative roller 43 so as to load it elastically against cam 44.
An example of a processing plant for bottles 3, indicated as a whole by numeral 50 and including labelling machine 1, is diagrammatically shown in
In particular, plant 50 comprises:
Machine 1 is advantageously arranged immediately downstream of cooling unit 53 so that bottles 3 exiting this unit are transferred to machine 1 only through linear or star conveyors 54, without intermediate process stations.
In practice, no processing is performed on bottles 3 during their transfer from cooling unit 53 to machine 1.
In use, bottles 3 are filled on filling machine 51 with a hot pourable product, for example a liquid food product at about 85° C. (step (b) in
By the effect of the capping operation, heated air present in the top portion of each bottle 3, between the product and relative cap 17, expands causing a stress that tends to produce a general swelling of bottle 3. During this step, bases 12 of bottles 3 are deformed assuming the first configuration shown in
It may be noted, also in the above said first deformed configuration, that central area 16 of base 12 does not project downwards beyond adjacent annular area 15; thereby, annular area 15 always ensures a stable support for relative bottle 3.
At this point, bottles 3 are fed to cooling unit 53 where the product contained therein is taken to the desired temperature (step (d) in
Bottles 3 exiting cooling unit 53 are fed, through a linear conveyor 54, directly to inlet wheel 6 and, from here, reach in a sequence the different operative units 18 of machine 1.
In practice, each bottle 3 is arranged resting on plate 22 of a relative operating unit 18. Bottles 3 are fed to machine 1 in a vertical position, with axes D thereof parallel to central axis A and coaxial to axes E of respective operating units 18.
During the movement of bottles 3 from transfer station 7 to transfer station 9, respective plungers 29 are activated to bring relative bases 12 from the first to the second configuration and thus cancel the depressive stresses acting within bottles 3.
With particular reference to the solution shown in
In practice, considering a single operative unit 18, the activation of relative actuator assembly 34 causes the displacement along axis E of relative plunger 29 so that head 37 completely passes through opening 28 of relative support element 21. During this displacement, protrusion 37a of head 37 engages, and matches with, corresponding indentation 16a of base 12 of bottle 3 arranged resting on relative support element 21 so as to center such bottle 3 along respective axis E. After this centering step, the plunger 29 continues its movement along axis E and pushes central area 16 of base 12 upwards until it is taken to the second configuration. During such deformation action, surface 37b of head 37 cooperates with surface 16b of central area 16 so as to guide it during transformation into surface 16c. The action of shaped head 37 on base 12 gently “forces” central area 16 to take the profile in negative of surface 37b. In this way, the risks that, after deformation, the plastic material may return to its initial condition are minimized.
By carrying the head 37 of the plunger 29 to a maximum distance from the relative resting surface 23 ranging between 22 mm to 40 mm along axis E, it is possible to obtain an increase of the internal pressure of bottle 3 ranging between 150 mbar and 300 mbar; this pressure increase produces the desired stiffening of the outer surface of bottle 3, which enables a very precise and accurate application of a relative label 2.
In particular, the labelling operation is performed immediately after the operation of deformation of base 12 of bottle 3.
More specifically, at the end of the deformation operation, plunger 29 is maintained in its second position (
In order to obtain winding of the label 2 on the relative bottle 3, electric motor 26 of relative operative unit 18 is activated; relative support element 21 and plunger 29 are therefore rotated about axis E with a corresponding rotation of bottle 3 borne thereby; due to the particular coupling between plunger 29 and piston 33, this latter element does not rotate.
The application operation of the label 2 on the relative bottle 3 is thus completed along the remaining portion of path P, until bottle 3 is fed to outlet wheel 10 at transfer station 11.
Prior to release bottles 3 to outlet wheel 10, plungers 29 are moved along axis E to their first positions, so as to not hamper the lateral displacement of bottles 3 towards outlet wheel 10.
In the variant of
As it appears from the above description, the particular shape of head 37 of each plunger 29 with protrusion 37a permits to center the relative bottle 3 along axis E prior to deform the relative base 12 and to apply the relative label 2. This centering action is obtained without using any external fixed centering element that may hamper feeding and release of bottles to/from carousel 5.
By configuring surface 37b in a complementary way to the profile of the desired final shape of surface 16c of base 12 of the relative bottle 3, such surface 37b performs a sort of “guiding action” on the deformation of the plastic material of base 12 so as to minimize the risks that, after deformation, this plastic material may return partially or totally to its initial condition.
Moreover, the fact that, each plunger 29 is maintained in the second position during labelling, i.e. after the deformation operation, further reduces the risks that the plastic material may return to its configuration before deformation.
It should be also noted that machine 1 is configured to perform both the labelling operation of bottles 3 and the operation of transforming bases 12 of bottles 3 from the first to the second configuration. This is obtained without modifying the path normally performed by operative units 18 on a typical labelling machine and without any intervention on the sequence of the operations traditionally performed to apply labels 2 on bottles 3.
Furthermore, the adoption of machine 1 within a normal processing plant of bottles 3 allows to obtain, the same operations being performed, a reduction both of the number of machines employed and of the number of conveyors for transferring the above said bottles 3 from a machine to another. This also translates into a significant reduction of the overall space occupied by processing plant 50 with respect to the known plants.
Finally, it is clear that modifications and variants to machine 1 and the method disclosed and shown herein can be made without departing from the scope of protection of the claims.
Number | Date | Country | Kind |
---|---|---|---|
13185243 | Sep 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4529469 | Jorss | Jul 1985 | A |
4594123 | Eder | Jun 1986 | A |
5137136 | Humele | Aug 1992 | A |
5150782 | Richter | Sep 1992 | A |
5464495 | Eder | Nov 1995 | A |
8479475 | Van Steen | Jul 2013 | B2 |
20070284958 | Zacche′ et al. | Dec 2007 | A1 |
20080000323 | Zacche′ et al. | Jan 2008 | A1 |
20090218003 | Miyazaki et al. | Sep 2009 | A1 |
20090293436 | Miyazaki et al. | Dec 2009 | A1 |
20100199611 | Pedmo et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
102963549 | Mar 2013 | CN |
1246520 | Aug 1967 | DE |
2102319 | Aug 1972 | DE |
3622179 | Jan 1988 | DE |
102008026244 | Dec 2009 | DE |
WO 2006068511 | Jun 2006 | WO |
Entry |
---|
Office Action issued by the Chinese Patent Office in counterpart Chinese Patent Application No. 20140430012.9, dated Mar. 10, 2016, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20150075117 A1 | Mar 2015 | US |