Container handling system

Abstract
Plastic container that is to be filled with a hot product includes a threaded neck portion, a base portion including a standing surface and a moveable element, and a body portion including a dome portion, first and second label stop portions, a supplemental vacuum panel and a sidewall relatively free of structural geometry that surrounds an interior of the body portion. During cooling, the hot product is contracted so as to create an induced vacuum. The supplemental vacuum panel is configured and operative to remove a first portion of an induced vacuum, and the moveable element is configured and operative to move from a first position to a second position to remove a second portion of the vacuum, wherein the first portion of the vacuum and the second portion of the vacuum constitute substantially the entire vacuum.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates generally to a container handling system and a process for filling, capping and cooling hot-filled containers with a projection, and more particularly to a system and process for filling, capping and cooling hot-filled, blow-molded containers with a projection that can extend outside the container during the filling process and be inverted inside the container before the filled container is removed from a production line.


Related Art


Known blow-molded containers are usually made of plastic and employ flex panels that reinforce the integrity of the container while accommodating internal changes in pressures and volume in the container as a result of heating and cooling. This is especially true with hot-fillable containers, or containers in which hot products are injected during a filling process, capped and cooled to room temperature thereby allowing the filled product to cool to the ambient room temperature. Such containers are disclosed in U.S. Pat. Nos. 6,298,638, 6,439,413, and 6,467,639 assigned to Graham Packaging Company, all of which are incorporated by reference herein.


In order to obtain the necessary strength associated with glass containers, known hot-filled containers made out of plastic tend to be formed with protruding rib structures that surround panels forming the container. While the protruding rib structures improve the strength of the container that is blow-molded out of plastic, the resultant, lightweight, blow-molded containers with panels and protruding rib structure detract from the desired smooth, sleek look of a glass container. Accordingly, a hot-fillable, blow-molded container and process of filling, capping and cooling the same is needed that more closely simulates a glass container and achieves the smooth outward appearance associated with glass containers.


In addition to having protruding rib structures for strength, known hot-filled plastic containers tend to have rectangular panels for vacuum compensation. For example, conventional hot-fill containers, depending upon the size, may have 6 vacuum or flex panels to take up the resultant vacuum after cooling the hot-filled product with rigid, structural columns or ribs between each vacuum panel. It is known in the art to cover the protruding rib structures and panels with a paper label to improve the aesthetics or overall appearance of the plastic container. Consequently, in order to provide support for the label, the panels of such containers are provided with additional protruding structures. Thus, hot-filled containers are provided with more recesses and corners from which hot-filled solid products are not easily removed. Or, if the hot-filled product is subsequently chilled by placing the container in ice, the label covering the panels with protruding structures traps water inside the recessed panels resulting in spillage of the water after the container is removed from ice. Accordingly, a hot-filled, plastic container with a smoother side surface that is relatively or completely free of structural geometry is desired to overcome the shortcomings of the prior art.


BRIEF SUMMARY OF THE INVENTION

A three stage system utilizes a simplified, blow-molded container that retains its structural integrity after being hot filled and cooled through conventional food or beverage systems. That is, a simplified container according to the invention is a container with at least a portion of the container side walls being relatively smooth that can be filled with a hot product, such as a liquid or a partly solid product, and retain the requisite strength so that a number of containers can be stacked on top of one another with the resultant stack being sturdy. The relatively smooth surface is relatively or completely free of structural geometry, such as the structural ribs, riblets, or vacuum panels. In addition, the simplified, blow-molded container still retains the features of vacuum packaging and the ability to accommodate internal changes in pressure and volume as a result of heating and cooling. That is, the simplified container may employ a single main invertible projection by itself to take up the vacuum; or, the simplified container may have a few main projections that take up the vacuum while still providing a substantial portion of the container to be relatively smooth for label placement, for example. Alternatively, depending upon the size of the container, a mini vacuum panel to supplement the main invertible projection may be used to complete the removal of the resultant vacuum and finish the look of the cooled container. Unlike conventional containers, structural ribs between vacuum panels are not necessary in a simplified container where a substantial portion of the container body is relatively smooth.


Initially, a container is blow-molded with an approximately polygonal, circular or oval projection extending, for example, from a base of the container. The approximately polygonal, circular or oval projection may project from the shoulders of the container, or firm another area of the container. If the projection extends from the base of the container, before the container exits the blow-molding operation, the projection may be inverted inside the container so that the base surface of the blow-molded container is relatively flat so that the container can be easily conveyed on a table top, without toppling.


In the next stage, the blow-molded container may be picked-up by a robotic arm or the like and placed into a production line conveyor where it is supported by its neck. A mechanical operation causes a rod to be inserted in the neck of the container and pushes the inverted projection outside the container to provide for the increased volume necessary to receive a hot-filled product, as well as accommodating variations in pressure due to temperature changes during cooling. Alternatively, compressed air or other pressure may be used to push the inverted projection outside of the container. With the projection extending outside the container, the container is filled with a hot product, capped and moved to the cooling operation. Since the container is supported by its neck during the filling and capping operations, the process according to the invention provides maximum control of the containers while being filled and capped.


The third stage of the operation may divide the filled and capped containers into different lanes and then the containers may be positioned in a rack or basket before entering the cooler for the cooling of the hot-filled product. It is envisioned that a robotic arm may lift the filled and capped container with the projection extending from the container into a rack or basket. If the projection extends from the base of the container, the basket or rack is provided with an opening for receiving the projection and or enabling the container to stand upright. The container-filled basket or rack is then conveyed through a cooling system to bring the temperature of the hot-filled container to room temperature.


As the hot-filled product in the container is cooled to room temperature, the container becomes distorted as a vacuum is created in an area where the once hot product filled a portion of the container. Thus, there is no longer a need for the increased volume obtained by the projection extending from the container. In addition, the cooled, distorted container needs to be reformed to the aesthetic original container shape. Accordingly, it is now possible to return the containers to the desired aesthetic shape obtained after the cool-down contraction of the product by an activator that pushes against the extending projections while the containers are held in place thereby pushing the projection inside the container in an inverted state. This inverted state may be the same inverted state achieved before exiting the blow-molding operation.


The activator, according to one embodiment of the invention, may be a relatively flat piece of material with approximately polygonal or circular projections extending therefrom at intervals corresponding to openings of a basket that receive the container projections. The activator may be a panel that can invert projections of a single row of containers in the basket. Or, the activator may have several rows of polygonal or circular projections so that an entire basket of containers with projections can be inverted with one upward motion of the activator. While the preceding embodiment describes an activator for inverting projections extending from the base of a container, other activators for inverting projections extending from the shoulders or other areas of the container are envisioned. The activator panel can be made out of heavy plastic, metal or wood. The action of inverting the extending projection absorbs the space of the vacuum created by the cooling operation and provides all the vacuum compensation necessary for the cooled, product-filled container.


This invention satisfies a long felt need for a plastic, blow-molded container having a smooth outward appearance similar to that of a heavier glass container.


A system for manufacturing a simplified plastic container that is to be filled with a hot product, comprising the steps of blow-molding parison to form a container body, the container body having a neck, a base, a smooth side surface surrounding an interior of the container body and a projection extending from the container; filling the container body with the hot product in a production line; capping the neck of the filled container body with a cap in the next operation of the production line; cooling the container body filled with the hot product; and pushing the projection extending from the cooled container body into the interior of the container body so that the resultant, filled and cooled container body is relatively flat. If the projection extends from a base of the container, this inversion permits conveying of the container body on its base.


Further objectives and advantages, as well as the structure and function of preferred embodiments will become apparent from a consideration of the description, drawings, and examples.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of a preferred embodiment of the invention, as illustrated in the accompanying drawings wherein like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.



FIG. 1 A schematically depicts containers according to the invention leaving the blow-molding operation;



FIG. 1B illustrates an embodiment of a plastic, blow-molded container with a smooth surface according to the invention;



FIG. 2 schematically depicts containers being filled and capped;



FIGS. 3A and B depict exemplary channeling of containers into baskets or racks according to the present invention for the cooling operation;



FIG. 4 depicts an exemplary flow of racked containers in a cooler according to the present invention;



FIGS. 5 A-C schematically illustrate one embodiment of an activation operation according to the invention;



FIG. 6 schematically depicts an exemplary embodiment of containers exiting the cooling operation, after the activation operation according to the present invention;



FIG. 7 is a schematic plan view of an exemplary handling system that combines single containers with a container holding device according to the invention;



FIG. 8 is a front side elevation view of the handling system of FIG. 7;



FIG. 9 is an unfolded elevation view of a section of the combining portion of the handling system of FIG. 8 illustrating the movement of the actuators;



FIG. 10 is a schematic plan view of a second embodiment of an activation portion of the handling system of the present invention;



FIG. 11 is a detailed plan view of the activation portion of the handling system of FIG. 10;



FIG. 12 is an unfolded elevation view of a section of the activation portion of FIG. 10 illustrating the activation of the container and the removal of the container from the container holding device;



FIG. 13 is an enlarged view of a section of the activation portion of FIG. 12; and



FIG. 14 is an enlarged view of the container holder removal section of FIG. 12.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.


As shown schematically in FIG. 1A, containers C formed in a blow-molding or forming operation may exit the blow-molding operation with a base designed so that the container can stand on its own. That is, a container with a relatively smooth side surrounding its interior may be blow-molded with a projection extending from the base of the smooth sided container, and before the blow-molded container leaves the blow-molding operation, the projection of the base may be inverted inside the interior of the container so that the resultant base surface of the container can easily be conveyed in a table top manner. As shown in FIG. 1, the blow-molded containers may be placed in shipping containers 10 or on pallets with, for example, 24 columns and 20 rows so that each rack carries 480 bottles or containers. The inverted blow-molded projection can be designed so that the finish or neck area of a container can securely rest within the inverted blow-molded projection. As a result, the pallets holding the containers can be stacked for easier transportation to an operation that fills, caps and then cools the filled containers.


As shown in FIG. 1B, the blow-molded containers may be smooth cylinders on the outside without the vacuum compression panels previously considered necessary on the side of the container, which detracted from the sleek appearance of the container and provided recesses for gathering product or ice water. These blow-molded containers are preferably made of plastic, such as a thermoplastic polyester resin, for example PET (polyethylene terephthalate) or polyolefins, such as PP and PE. Each container is blow-molded and formed with an approximately polygonal, circular or oval projection 12 that extends from its base during the initial blow-mold operation. In the exemplary embodiment, the relatively smooth side surface of the container may taper slightly in the mid-section of the container to provide an area to place a label. In another embodiment of such a blow-molded container, the smooth side surface may not be formed with the slight depressed area if the label is printed on the container, for example. Alternatively, the relatively smooth surface may have ornamental features (e.g., textures).


In the case of larger containers (e.g., 64 oz.), a container may be formed with a grip panel on a portion of the cylindrical body of the container. Thus, Applicants envision simplified containers where a substantial portion of the cylindrical body is relatively or completely free of structural geometry. An invertible projection may be formed at the base of the container. The invertible projection may take up most of the vacuum bringing the cooled hot-filled container to its aesthetic appearance. It is envisioned that Mini or supplemental vacuum panels may be necessary to complete the removal of the vacuum in larger containers. These mini or supplemental vacuum panels may be incorporated in the grip panel or at an area that does not interfere with the positioning of a label.


Grip panels are disclosed, for example, in U.S. Pat. Nos. 6,375,025; 5,392,937; 6,390,316; and 5,598,941. Many of the grip panels disclosed in the prior art may also serve as vacuum relief or flex panels. Utilizing the present invention, it is not necessary for the grip panel to act as a vacuum relief panel and the design may therefore be simplified. That is, the ribbed structure associated with the flex panel may not be necessary, or label panel support ribs may be reduced or eliminated. Persons of ordinary skill in the art will be able to modify or simplify known grip panels for use with the present invention.


The base of a blow-molded container, according to one embodiment of the invention, has an inversion or standing ring 14 adjacent a tapered area of the smooth side surface and inside the inversion ring is a substantially smooth projection 12 that extends approximately from a center of the base. The size and shape of the projection 12 depends upon the size and shape of the container that is formed during the blow-molding operation, as well as the contraction properties of the contained product. Prior to leaving the blow-molding operation, the projection may be forced inside the container to provide a relatively flat surface at the container's base, or a stable base for the container. This inversion of the projection 12 extending from the base of the blow-molded container may be accomplished by pneumatic or mechanical means.


In this manner, as best seen in FIG. 7, containers C can be conveyed singularly to a combining system that combines container holding devices and containers. The combining system of FIG. 7 includes a container in-feed 18a and a container holding device in-feed 20. As will be more fully described below, this system may be one way to stabilize containers with projected bottom portions that are unable to be supported by their bottom surfaces alone. Container in-feed 18a includes a feed scroll assembly 24, which feeds and spaces the containers at the appropriate spacing for merging containers C into a feed-in wheel 22a. Wheel 22a comprises a generally star-shaped wheel, which feeds the containers to a main turret system 30 and includes a stationary or fixed plate 23a that supports the respective containers while containers C are fed to turret system 30, where the containers are matched up with a container holding device H and then deactivated to have a projecting bottom portion.


Similarly, container holding devices H are fed in and spaced by a second feed scroll 26, which feeds in and spaces container holding devices H to match the spacing on a second feed-in wheel 28, which also comprises a generally star-shaped wheel. Feed-in wheel 28 similarly includes a fixed plate 28a for supporting container holding devices H while they are fed into turret system 30. Container holding devices H are fed into main turret system 30 where containers C are placed in container holding devices H, with holding devices H providing a stable bottom surface for processing the container. In the illustrated embodiment, main turret system 30 rotates in a clock-wise direction to align the respective containers over the container holding devices fed in by star wheel 28: However, it should be understood that the direction of rotation may be changed. Wheels 22a and 28 are driven by a motor 29 (FIG. 8), which is drivingly coupled, for example, by a belt or chain or the like, to gears or sheaves mounted on the respective shafts of wheels 22a and 28.


Container holding devices H comprise disc-shaped members with a first recess with an upwardly facing opening for receiving the lower end of a container and a second recess with downwardly facing opening, which extends upwardly from the downwardly facing side of the disc-shaped member through to the first recess to form a transverse passage through the disc-shaped member. The second recess is smaller in diameter than the first so as to form a shelf in the disc-shaped member on which at least the perimeter of the container can rest. As noted above, when a container is deactivated, its vacuum panels will be extended or projecting from the bottom surface. The extended or projecting portion is accommodated by the second recess. In addition, the containers can then be activated through the transverse passage formed by the second recess, as will be appreciated more fully in reference to FIGS. 5A-C and 12-13 described below.


In order to provide extra volume and accommodation of pressure changes needed when the containers are filled with a hot product, such as a hot liquid or a partly solid product, the inverted projection of the blow-molded containers should be pushed back out of the container (deactivated). For example, a mechanical operation employing a rod that enters the neck of the blow-molded container and pushes against the inverted projection of the blow-molded container causing the inverted projection to move out and project from the bottom of the base, as shown in FIGS. 1B, 5C and 12-13. Alternatively, other methods of deploying the inverted projection disposed inside a blow-molded container, such as injecting pressurized air into the blow-molded container, may be used to force the inverted projection outside of the container. Thus, in this embodiment, the blow-molded projection is initially inverted inside the container and then, a repositioning operation pushes the inverted projection so that it projects out of the container.


Referring to FIG. 8, main turret system 30 includes a central shaft 30a, which supports a container carrier wheel 32, a plurality of radially spaced container actuator assemblies 34 and, further, a plurality of radially spaced container holder actuator assemblies 36 (FIG. 9). Actuator assemblies 34 deactivate the containers (extend the inverted projection outside the bottom surface of the container), while actuator assemblies 36 support the container holding devices and containers. Shaft 30a is also driven by motor 29, which is coupled to a gear or sheave mounted to shaft 30a by a belt or chain or the like. In addition, main turret system 30 includes a fixed plate 32a for supporting the containers as they are fed into container carrier wheel 32. However, fixed plate 32a terminates adjacent the feed-in point of the container holding devices so that the containers can be placed or dropped into the container holding devices under the force of gravity, for example. Container holding devices H are then supported on a rotating plate 32b, which rotates and conveys container holding devices H to discharge wheel 22b, which thereafter feeds the container holding devices and containers to a conveyor 18b, which conveys the container holding devices and containers to a filling system. Rotating plate 321) includes openings or is perforated so that the extendable rods of the actuator assemblies 36, which rotate with the rotating plate, may extend through the rotating plate to raise the container holding devices and containers and feed the container holding devices and containers to a fixed plate or platform 23b for feeding to discharge wheel 22b.


As best seen in FIG. 9, each actuator assembly 34, 36 is positioned to align with a respective container C and container holding device IL Each actuator assembly 34 includes an extendable rod 38 for deactivating containers C, as will be described below. Each actuator assembly 36 also includes an extendable rod 40 and a pusher member 42, which supports a container holding device, while a container C is dropped into the container holding device H and, further supports the container holding device H while the container is deactivated by extendable rod 38. To deactivate a container, actuator assembly 34 is actuated to extend its extendable rod 38 so that it extends into the container C and applies a downward force onto the invertible projection (12) of the container to thereby move the projection to an extended position to increase the volume of container C for the hot-filling and post-cooling process that follows (FIG. 1B). After rod 38 has fully extended the invertible projection of a container, rod 38 is retracted so that the container holding device and container may be conveyed for further processing.


Again as best seen in FIG. 9, while rod 38 is retracted, extendable rod 40 of actuator 36 is further extended to raise the container holding device and container to an elevation for placement on fixed plate or platform 23b of discharge wheel 22b. Wheel 22b feeds the container holding device and container to an adjacent conveyor 18b, which conveys the container holding device and container to filling portion 16 of the container processing system. Discharge wheel 22b is similar driven by motor 29, which is coupled to a gear or sheave mounted on its respective shaft.


Referring again to FIGS. 8 and 9, main turret assembly 30 includes an upper cam assembly 50 and a lower cam assembly 52. Cam assemblies 50 and 52 comprise annular cam plates that encircle shaft 30a and actuator assemblies 34 and 36. The cam plates provide cam surfaces to actuate the actuator assemblies, as will be more fully described below. Upper cam assembly 50 includes upper cam plate 54 and a lower cam plate 56, which define there between a cam surface or groove 58 for guiding the respective extendable rods 38 of actuator assemblies 34. Similarly, lower cam assembly 52 includes a lower cam plate 60 and an upper cam plate 62 which define there between a cam surface or groove 64 for guiding extendable rods 40 of actuator assemblies 36. Mounted to extendable rod 38 may be a guide member or cam follower, which engages cam groove or surface 58 of upper cam assembly 50. As noted previously, actuator assemblies 34 are mounted in a radial arrangement on main turret system 30 and, further, are rotatably mounted such that actuator assemblies 34 rotate with shaft 30a and container holder wheel 32. In addition, actuator assemblies 34 may rotate in a manner to be synchronized with the in-feed of containers C. As each of the respective actuator assemblies 34 is rotated about main turret system 30 with a respective container, the cam follower is guided by groove 58 of cam assembly 50, thereby raising and lowering extendable member 38 to deactivate the containers, as previously noted, after the containers are loaded into the container holding devices.


If the container holding devices are not used, the containers according to the invention may be supported at the neck of each container during the filling and capping operations to provide maximum control of the container processes. This may be achieved by rails R, which support the neck of the container, and a traditional cleat and chain drive, or any other known like-conveying modes for moving the containers along the rails R of the production line. The extendable projection 12 may be positioned outside the container C by an actuator as described above.


The process of repositioning the projection outside of the container preferably should occur right before the filling of the hot product into the container. According to one embodiment of the invention, the neck of a container would be sufficiently supported by rails so that the repositioning operation could force or pop the inverted base outside of the container without causing the container to fall off the rail conveyor system. In some instances, it may not be necessary to invert the projection prior to leaving the blow-molding operation and these containers are moved directly to a filling station. The container with an extended projection, still supported by its neck, may be moved by a traditional neck rail drive to the filling and capping operations, as schematically shown in FIG. 2.


As shown in FIG. 3A, the system for conveying the filled containers may include dividing the single filling and capping rail R into a plurality of rail lanes RL that feed into a shuttle basket B or rack system. The continuous batch mode handling of the containers into the cooling baskets or racks provides total control of the containers/package throughout the cooling cycle. As shown in FIG. 3B, baskets or racks are mechanically fed into a lane where the basket or rack receives hot-filled containers with the extending projections from each of the plurality of rail lanes, until the basket is full. After the basket or rack is full of filled containers, it is moved for example, perpendicularly away from the direction of basket or rack feed toward a cooler. The shuttle basket or rack system may be driven through a traditional container cooler via a cleat and chain drive, for example.


In one embodiment, the basket may have a gate, which swings down from its upward position in order to allow containers C with the extending projection 12 to enter the basket. In that the hot-filled containers have projections extending from their base, the rail lanes and basket may be controlled in a sequence to fill the basket or rack with containers. For example, the basket or rack would have a plurality of openings for receiving respective projections of the hot-filled containers. Either robotic arms and/or the rail lanes would lift a row of hot-filled containers with extending projections over the gate and into respective openings of the basket. The basket would move away from its initial fed position exposing another row of openings for receiving hot-filled containers and then that row would be filled with the containers with the extending projections. This process would continue so that the entire basket could receive hot-filled containers.


The handling of the filled and capped containers with extending projections would also be sequenced so that there would be room underneath the rail lanes to feed the basket or rail. Thus, the basket could be positioned initially so that a container fed down each rail lane could be lifted into a respective opening of the basket. The basket would move to the left, as shown in FIG. 3B, and then the next row of containers would be fed down each rail lane and then lifted into the second row openings of the basket or mil. Alternatively, the basket or racks could be fed into their position and a robotic arm of the rail lanes could pick up each container and place the same in a respective opening of the basket or rack.


After the basket is full of hot-filled containers, the gate would swing upwards and lock onto the side of the basket and then the basket would move toward the cooler C. Thus, according to the invention, the handling system provides lane control to align the containers before they are placed in the basket or rack system. FIG. 4 illustrates how a shuttle basket B or rack system may travel through a traditional cooler, which may have ambient air or coolant blowing against the hot-filled containers to cool their contents to room temperature.


After the containers and their contents have been cooled during the cooling operation, the cooled product has contracted and thus an extra amount of volume exists in these cooled containers. However, the cooling operation also induces a vacuum in each container which distorts each container thereby lessening the amount of volume in the container. Since the projection extending from the base of the container is no longer necessary and a relatively flat base surface is desired, each shuttle basket or rack enters an activation operation, which reforms the containers from the induced vacuum caused by the cooled down contraction of the product within the containers to aesthetic containers. The basket or racks provide location and control of the containers during the activation step at the end of the cooling cycle.


As schematically shown in FIGS. 5A-C, the activation operation is achieved by placing a panel P with a number of projections corresponding to the projections extending from the containers underneath a container-filled basket B or rack. The panel and projections may rest underneath a single row or column of the containers in the basket or rack. Or, the panel and associated projections may be larger extending over two or more row or columns. An arm or cover (not shown) is placed over the containers to be activated. Then, the panel is moved upward towards the projections with sufficient force to push the projections back to their inverted position inside a respective container, like a traditional push-up. Thus, the extending projection is moved back inside the container body or re-inverted inside the container. The arm or cover placed over the containers holds the containers in place when the force of the activator panel is applied against the containers. It is envisioned that a panel the size of the basket or rack and with respective projections that extend to each of the openings of the basket or rack could invert the projecting base of the container inside each opening in the basket or rack, if the force applied to the panel is sufficient to pop the projecting bases back into the container.


In an exemplary embodiment, the activation step would occur at the end of the cooling cycle and would absorb or counter the vacuum created during the cooling of the hot product. Once the base projections have been re-inverted so that each base surface is relatively flat, the containers may be unloaded from the basket or racks that shuttle the containers through the cooler. As schematically shown in FIG. 6, at the cooling exit, a robotic arm RA may lift the containers at their capped neck vertically upwards and then out of the basket B or rack. The containers with the inverted bases would then be released from the robotic arm and sent down another conveying line like a normally filled bottle or container. The conveying line could be an in-line rail belt or could be an in-line conveying system using air to control the movement of the containers. The conveying line may feed the containers to a labeling operation and then to a packaging operation where the containers are loaded into cases for shipping to a grocery store or the like.


In an alternative operation, it is envisioned that containers would continue along the production line from the filling station, the capping station and through a cooling station. That is, instead of queuing up the containers for placement in a basket or rack for the cooling operation, each container would move along a production conveyor line. After each container passed through a cooling station, an activator would force the projecting base into the interior of the container. In a similar alternative embodiment where containers are individually passed through the cooling station, the cooled containers are then re-inverted as previously described. Then, the activated containers could be placed in conventional baskets or racks.


Referring to FIGS. 10 and 11, one system for singularly activating containers C includes a feed-in scroll assembly 84, which feeds and, further, spaces the respective container holding devices and their containers at a spacing appropriate for feeding into a feed-in wheel 86. Feed-in wheel 86 is of similar construction to wheel 22b and includes a generally star-shaped wheel that feeds-in the container holders and containers to turret assembly 88. Turret assembly 88 is of similar construction to turret assembly 30 and includes a container holder wheel 90 for guiding and moving container holding devices H and containers C in a circular path and, further, a plurality of actuator assemblies 104 and 106 for removing the containers from the container holders and for activating the respective containers, as will be more fully described below. After the respective containers have been activated and the respective containers removed from the container holding devices, the holders are discharged by a discharge wheel 92 to conveyor 94 and the containers are discharged by a discharge wheel 96 to a conveyor 98 for further processing. Wheels 86, 92, and 96 may be driven by a common motor, which is drivingly coupled to gears or sheaves mounted to the respective shafts of wheels 86, 92, and 96.


As previously noted, turret assembly 88 is of similar construction to turret assembly 30 and includes container holder wheel 90, upper and lower cam assemblies 100 and 102, respectively, a plurality of actuator assemblies 104 for griping the containers, and a plurality of actuator assemblies 106 for activating the containers. In addition, turret system 88 includes a support plate 107, which supports the container holders and containers as they are moved by turret system 88. As best seen in FIG. 11, container holder wheel 90, actuator assemblies 104, actuator assemblies 106, and plate 107 are commonly mounted to shaft 88a so that they rotate in unison. Shaft 88a is similarly driven by the common motor, which is drivingly coupled to a gear or sheave mounted on shaft 88a.


Looking at FIGS. 12-14, actuator assemblies 104 and 106 are similarly controlled by upper and lower cam assemblies 100 and 102, to remove the containers C from the container holding devices II and activate the respective containers so that the containers generally assume their normal geometrically stable configuration wherein the containers can be supported from their bottom surfaces and be conveyed on a conventional conveyor. Referring to FIG. 12, each actuator assembly 104 includes actuator assembly 34 and a container gripper 108 that is mounted to the extendable rod 38 of actuator assembly 34. As would be understood, grippers 108 are, therefore, extended or retracted with the extension or retraction of extendable rods 38, which is controlled by upper cam assembly 100.


Similar to upper cam assembly 50, upper cam assembly 100 includes an upper plate 110 and a lower plate 112, which define therebetween a cam surface or recess 114, which guides guide members 72 of actuator assemblies 104 to thereby extend and retract extendable rods 38 and in turn to extend and retract container grippers 108. As the containers are conveyed through turret assembly 88, a respective gripper 108 is lowered onto a respective container by its respective extendable rod 38. Once the gripper is positioned on the respective container, actuator assemblies 106 are then actuated to extend their respective extendable rods 116, which extend through plate 107 and holders H, to apply a compressive force onto the invertible projections of the containers to move the projections to their recessed or retracted positions to thereby activate the containers. As would be understood, the upward force generated by extendable rod 116 is counteracted by the downward force of a gripper 108 on container C. After the activation of each container is complete, the container then can be removed from the holder by its respective gripper 108.


Referring to FIGS. 12-13, each actuator assembly 106 is of similar construction to actuator assemblies 34 and 36 and includes a housing 120, which supports extendable rod 116. Similar to the extendable rods of actuator assemblies 34 and 36, extendable rod 116 includes mounted thereto a guide 122, which engages the cam surface or recess 124 of lower cam assembly 102. In this manner, guide member 122 extends and retracts extendable rod 116 as it follows cam surface 124 through turret assembly 88. As noted previously, when extendable rod 116 is extended, it passes through the base of container holding device H to extend and contact the lower surface of container C and, further, to apply a force sufficient to compress or move the invertible projection its retracted position so that container C can again resume its geometrically stable configuration for normal handling or processing.


The physics of manipulating the activation panel P or extendable rod 116 is a calculated science recognizing 1) Headspace in a container; 2) Product density in a hot-filled container; 3) Thermal differences from the fill temperature through the cooler temperature through the ambient storage temperature and finally the refrigerated temperature; and 4) Water vapor transmission. By recognizing all of these factors, the size and travel of the activation panel P or extendable rod 116 is calculated so as to achieve predictable and repeatable results. With the vacuum removed from the hot-filled container, the container can be light-weighted because the need to add weight to resist a vacuum or to build vacuum panels is no longer necessary. Weight reduction of a container can be anticipated to be approximately 10%.


The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A hot-fillable plastic container comprising: a threaded neck portion configured to receive a threaded cap to sealingly enclose a product hot-filled into the plastic container;a body portion including a dome portion adjacent the threaded neck portion, a first label stop portion adjacent the dome portion, a second label stop portion, a sidewall between the first and second label stop portions to accommodate placement of a label, a supplemental vacuum panel formed in the sidewall and configured to remove a first portion of an induced vacuum created within the plastic container in response to cooling after the plastic container is hot-filled and capped; anda base portion including a standing surface for conveyance of the plastic container on a flat surface and having a moveable element arranged at a bottom end thereof, the moveable element of the base portion being configured to move from a first initial pre-filling position to a second position in response to a selectively-applied pushing force to remove a second portion of the vacuum, the second position being more toward an interior of the plastic container than the first initial pre-filling position,wherein the first portion of the vacuum and the second portion of the vacuum constitute substantially the entire vacuum.
  • 2. The hot-fillable plastic container according to claim 1, wherein the moveable element is configured to remain in the first initial pre-filling position until the selectively-applied pushing force is sufficient to move the moveable element from the first initial pre-filling position to the second position.
  • 3. The hot-fillable plastic container according to claim 1, wherein the plastic container is configured such that the moveable element in the first initial pre-filling position extends below the standing surface of the plastic container during hot-filling, capping, and cooling of the plastic container.
  • 4. The hot-fillable plastic container according to claim 1, wherein the plastic container is configured to be conveyed by the standing surface thereof on a flat surface with the moveable element not extending below the standing surface.
  • 5. The hot-fillable plastic container according to claim 1, wherein the body portion of the plastic container is free of surface features other than said supplemental vacuum panel that removes the first portion of the vacuum.
  • 6. The hot-fillable plastic container according to claim 1, wherein the supplemental vacuum panel is defined in a grip panel in the body portion of the plastic container.
  • 7. The hot-fillable plastic container according to claim 1, wherein the standing surface of the plastic container is separate from the moveable element and supports the plastic container during one or more of hot-filling, capping, creating a vacuum and removing the first portion of the vacuum.
  • 8. The hot-fillable plastic container according to claim 1, wherein the supplemental vacuum panel removes the first portion of the vacuum by deflection of the supplemental vacuum panel.
  • 9. The hot-fillable plastic container according to claim 1, wherein the first initial pre-filling position extends below the standing surface and the second position extends above the standing surface.
  • 10. The hot-fillable plastic container according to claim 1, wherein a projection including at least a portion of the moveable element extends below the standing surface of the plastic container in the first initial pre-filling position.
  • 11. The hot-fillable plastic container according to claim 10, wherein the projection includes the entire moveable element.
  • 12. The hot-fillable plastic container according to claim 1, wherein the vacuum created in the hot-filled and capped plastic container causes distortion of the plastic container, and removing the vacuum forms the plastic container to a desired shape.
  • 13. The hot-fillable plastic container according to claim 1, wherein the second portion of the vacuum comprises most of the entire vacuum.
  • 14. The hot-fillable plastic container according to claim 1, wherein the supplemental vacuum panel does not interfere with positioning of a label proximate the sidewall.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 12/354,327 filed Jan. 15, 2009, which is a continuation of U.S. patent application Ser. No. 10/566,294, filed Sep. 5, 2006, which is a national stage entry of International Patent Application No. PCT/US2004/024581, filed Jul. 30, 2004, which claims priority to U.S. Provisional Application Ser. No. 60/551,771, filed Mar. 11, 2004, and 60/491,179, filed Jul. 30, 2003, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (385)
Number Name Date Kind
1499239 Malmquist Jun 1924 A
2142257 Saeta Jan 1937 A
D110624 Mekeel, Jr. Jul 1938 S
2124959 Vogel Jul 1938 A
2378324 Ray et al. Jun 1945 A
2880902 Owsen Apr 1959 A
2960248 Kuhlman Nov 1960 A
2971671 Shakman Feb 1961 A
2982440 Harrison May 1961 A
3043461 Glassco Jul 1962 A
3081002 Tauschinski et al. Mar 1963 A
3090478 Stanley May 1963 A
3142371 Rice et al. Jul 1964 A
3174655 Hurschman Mar 1965 A
3198861 Marvel Aug 1965 A
3201111 Afton Aug 1965 A
3301293 Santelli Jan 1967 A
3325031 Singier Jun 1967 A
3397724 Bolen et al. Aug 1968 A
3409167 Blanchard Nov 1968 A
3417893 Lieberman Dec 1968 A
3426939 Young Feb 1969 A
3441982 Tsukahara et al. May 1969 A
3468443 Marcus Sep 1969 A
3483908 Donovan Dec 1969 A
3485355 Stewart Dec 1969 A
3693828 Kneusel et al. Sep 1972 A
3704140 Petit et al. Nov 1972 A
3727783 Carmichael Apr 1973 A
3791508 Osborne et al. Feb 1974 A
3819789 Parker Jun 1974 A
3904069 Toukmanian Sep 1975 A
3918920 Barber Nov 1975 A
3935955 Das Feb 1976 A
3941237 MacGregor Mar 1976 A
3942673 Lyu et al. Mar 1976 A
3949033 Uhlig Apr 1976 A
3956441 Uhlig May 1976 A
4035455 Rosenkranz et al. Jul 1977 A
4036926 Chang Jul 1977 A
4037752 Dulmaine et al. Jul 1977 A
4117062 Uhlig Sep 1978 A
4123217 Fischer et al. Oct 1978 A
4125632 Vosti et al. Nov 1978 A
4134510 Chang Jan 1979 A
4158624 Ford et al. Jun 1979 A
4170622 Uhlig Oct 1979 A
4174782 Obsomer Nov 1979 A
4177239 Gittner et al. Dec 1979 A
4219137 Hutchens Aug 1980 A
4231483 Dechenne et al. Nov 1980 A
4247012 Alberghini Jan 1981 A
4301933 Yoshino et al. Nov 1981 A
4318489 Snyder et al. Mar 1982 A
4318882 Agrawal et al. Mar 1982 A
4338765 Ohmori et al. Jul 1982 A
4355728 Ota et al. Oct 1982 A
4377191 Yamaguchi Mar 1983 A
4378328 Przytulla et al. Mar 1983 A
4381061 Cerny et al. Apr 1983 A
D269158 Gaunt et al. May 1983 S
4386701 Galer Jun 1983 A
4436216 Chang Mar 1984 A
4444308 MacEwen Apr 1984 A
4450878 Takada et al. May 1984 A
4465199 Aoki Aug 1984 A
4495974 Pohorski Jan 1985 A
4497621 Kkudert et al. Feb 1985 A
4497855 Agrawal et al. Feb 1985 A
4525401 Pocock et al. Jun 1985 A
4542029 Caner et al. Sep 1985 A
4547333 Takada Oct 1985 A
4585158 Wardlaw, III Apr 1986 A
4610366 Estes et al. Sep 1986 A
4628669 Herron et al. Dec 1986 A
4642968 McHenry et al. Feb 1987 A
4645078 Reyner Feb 1987 A
4658974 Fujita et al. Apr 1987 A
4667454 McHenry et al. May 1987 A
4684025 Copland et al. Aug 1987 A
4685273 Caner et al. Aug 1987 A
D292378 Brandt et al. Oct 1987 S
4701121 Jakobsen et al. Oct 1987 A
4723661 Hoppmann et al. Feb 1988 A
4724855 Jackson et al. Feb 1988 A
4725464 Collette Feb 1988 A
4747507 Fitzgerald et al. May 1988 A
4749092 Sugiura et al. Jun 1988 A
4769206 Reymann et al. Sep 1988 A
4773458 Touzani Sep 1988 A
4785949 Krishnakumar et al. Nov 1988 A
4785950 Miller et al. Nov 1988 A
4807424 Robinson et al. Feb 1989 A
4813556 Lawrence Mar 1989 A
4831050 Cassidy et al. May 1989 A
4836398 Leftault, Jr. et al. Jun 1989 A
4840289 Fait et al. Jun 1989 A
4850493 Howard, Jr. Jul 1989 A
4850494 Howard, Jr. Jul 1989 A
4865206 Behm et al. Sep 1989 A
4867323 Powers Sep 1989 A
4880129 McHenry et al. Nov 1989 A
4887730 Touzani Dec 1989 A
4892205 Powers et al. Jan 1990 A
4896205 Weber Jan 1990 A
4919284 Tiedemann et al. Apr 1990 A
4921147 Poirier May 1990 A
4927679 Beck May 1990 A
4946053 Conrad Aug 1990 A
4962863 Wendling et al. Oct 1990 A
4967538 Leftault, Jr. et al. Nov 1990 A
4978015 Walker Dec 1990 A
4997692 Yoshino Mar 1991 A
5004109 Bartley et al. Apr 1991 A
5005716 Eberle Apr 1991 A
5014868 Wittig et al. May 1991 A
5020691 Nye Jun 1991 A
5024340 Alberghini et al. Jun 1991 A
5033254 Zenger Jul 1991 A
5054632 Alberghini et al. Oct 1991 A
5060453 Alberghini et al. Oct 1991 A
5067622 Garver et al. Nov 1991 A
5090180 Sorensen Feb 1992 A
5092474 Leigner Mar 1992 A
5122327 Spina et al. Jun 1992 A
5133468 Brunson et al. Jul 1992 A
5141121 Brown et al. Aug 1992 A
5178290 Ota et al. Jan 1993 A
5199587 Ota et al. Apr 1993 A
5199588 Hayashi Apr 1993 A
5201438 Norwood Apr 1993 A
5217737 Gygax et al. Jun 1993 A
5234126 Jonas et al. Aug 1993 A
5244106 Takacs Sep 1993 A
5251424 Zenger et al. Oct 1993 A
5255889 Collette et al. Oct 1993 A
5261544 Weaver, Jr. Nov 1993 A
5279433 Krishnakumar et al. Jan 1994 A
5281387 Collette et al. Jan 1994 A
5310043 Alcorn May 1994 A
5333761 Davis et al. Aug 1994 A
5337909 Vailliencourt Aug 1994 A
5337924 Dickie Aug 1994 A
5341946 Valliencourt et al. Aug 1994 A
5389332 Amari et al. Feb 1995 A
5392937 Prevot et al. Feb 1995 A
5405015 Bhatia et al. Apr 1995 A
5407086 Ota et al. Apr 1995 A
5411699 Collette et al. May 1995 A
5454481 Hsu Oct 1995 A
5472105 Krishnakumar et al. Dec 1995 A
5472181 Lowell Dec 1995 A
RE35140 Powers, Jr. Jan 1996 E
5484052 Pawloski et al. Jan 1996 A
D366831 Semersky et al. Feb 1996 S
5492245 Kalbanis Feb 1996 A
5503283 Semersky Apr 1996 A
5543107 Malik et al. Aug 1996 A
5574846 Yoshimura et al. Nov 1996 A
5593063 Claydon et al. Jan 1997 A
5598941 Semersky et al. Feb 1997 A
5632397 Fandeux et al. May 1997 A
5642826 Melrose Jul 1997 A
5672730 Cottman Sep 1997 A
5687874 Omori et al. Nov 1997 A
5690244 Darr Nov 1997 A
5697489 Deonarine et al. Dec 1997 A
5704504 Bueno Jan 1998 A
5713480 Petre et al. Feb 1998 A
5718030 Langmack et al. Feb 1998 A
5730314 Wiemann et al. Mar 1998 A
5730914 Ruppman, Sr. Mar 1998 A
5735420 Nakamaki et al. Apr 1998 A
5737827 Kuse et al. Apr 1998 A
5758802 Wallays Jun 1998 A
5762221 Tobias et al. Jun 1998 A
5780130 Hansen et al. Jul 1998 A
5785197 Slat Jul 1998 A
5819507 Kaneko et al. Oct 1998 A
5829614 Collette et al. Nov 1998 A
5858300 Shimizu et al. Jan 1999 A
5860556 Robbins, III Jan 1999 A
5887739 Prevot et al. Mar 1999 A
5888598 Brewster et al. Mar 1999 A
5897090 Smith et al. Apr 1999 A
5906286 Matsuno et al. May 1999 A
5908128 Krishnakumar et al. Jun 1999 A
D413519 Eberle et al. Sep 1999 S
D415030 Searle et al. Oct 1999 S
5971184 Krishnakumar et al. Oct 1999 A
5976653 Collette et al. Nov 1999 A
5989661 Krishnakumar et al. Nov 1999 A
6016932 Gaydosh et al. Jan 2000 A
RE36639 Okhai Apr 2000 E
6044996 Carew Apr 2000 A
6045001 Seul Apr 2000 A
6051295 Schloss et al. Apr 2000 A
6063325 Nahill et al. May 2000 A
6065624 Steinke May 2000 A
6068110 Kumakiri et al. May 2000 A
6074596 Jacquet Jun 2000 A
6077554 Wiemann et al. Jun 2000 A
6090334 Matsuno et al. Jul 2000 A
6105815 Mazda Aug 2000 A
6113377 Clark Sep 2000 A
D433946 Rollend et al. Nov 2000 S
6176382 Bazlur Jan 2001 B1
D440877 Lichtman et al. Apr 2001 S
6209710 Mueller et al. Apr 2001 B1
6213325 Cheng et al. Apr 2001 B1
6213326 Denner Apr 2001 B1
6217818 Collette et al. Apr 2001 B1
6228317 Smith et al. May 2001 B1
6230912 Rashid May 2001 B1
6248413 Barel et al. Jun 2001 B1
6253809 Paradies Jul 2001 B1
6273282 Ogg et al. Aug 2001 B1
6277321 Vailliencourt et al. Aug 2001 B1
6298638 Bettle Oct 2001 B1
D450595 Ogg et al. Nov 2001 S
6354427 Pickel et al. Mar 2002 B1
6375025 Mooney Apr 2002 B1
6390316 Mooney May 2002 B1
6413466 Boyd et al. Jul 2002 B1
6439413 Prevot Aug 2002 B1
6460714 Silvers et al. Oct 2002 B1
6467639 Mooney Oct 2002 B2
6485669 Boyd et al. Nov 2002 B1
6494333 Sasaki et al. Dec 2002 B2
6502369 Andison et al. Jan 2003 B1
6514451 Boyd et al. Feb 2003 B1
6585123 Pedmo et al. Jul 2003 B1
6585124 Boyd et al. Jul 2003 B2
6595380 Silvers Jul 2003 B2
6612451 Tobias et al. Sep 2003 B2
6635217 Britton Oct 2003 B1
D482976 Melrose Dec 2003 S
6662960 Hong et al. Dec 2003 B2
6676883 Hutchinson et al. Jan 2004 B2
D492201 Pritchett et al. Jun 2004 S
6749075 Bourque et al. Jun 2004 B2
6749780 Tobias Jun 2004 B2
6763968 Boyd et al. Jul 2004 B1
6763969 Melrose et al. Jul 2004 B1
6769561 Futral et al. Aug 2004 B2
6779673 Melrose et al. Aug 2004 B2
6796450 Prevot et al. Sep 2004 B2
6857531 Slat Feb 2005 B2
6920992 Lane et al. Jul 2005 B2
6923334 Melrose et al. Aug 2005 B2
6929138 Melrose et al. Aug 2005 B2
6932230 Pedmo et al. Aug 2005 B2
6942116 Lisch et al. Sep 2005 B2
6974047 Kelley et al. Dec 2005 B2
6983858 Slat et al. Jan 2006 B2
7051073 Dutta May 2006 B1
7051889 Boukobza May 2006 B2
D522368 Darr et al. Jun 2006 S
7073675 Trude Jul 2006 B2
7077279 Melrose Jul 2006 B2
7080747 Lane et al. Jul 2006 B2
D531910 Melrose Nov 2006 S
7137520 Melrose Nov 2006 B1
7140505 Roubal et al. Nov 2006 B2
7150372 Lisch et al. Dec 2006 B2
D535884 Davis et al. Jan 2007 S
7159374 Abercrombie, III et al. Jan 2007 B2
D538168 Davis et al. Mar 2007 S
D547664 Davis et al. Jul 2007 S
7334695 Bysick et al. Feb 2008 B2
7350657 Eaton et al. Apr 2008 B2
D572599 Melrose Jul 2008 S
7416089 Kraft et al. Aug 2008 B2
D576041 Melrose et al. Sep 2008 S
7451886 Lisch et al. Nov 2008 B2
7543713 Trude et al. Jun 2009 B2
7552834 Tanaka et al. Jun 2009 B2
7574846 Sheets et al. Aug 2009 B2
7694842 Melrose Apr 2010 B2
7726106 Kelley et al. Jun 2010 B2
7735304 Kelley et al. Jun 2010 B2
7748551 Gatewood et al. Jul 2010 B2
D623952 Yourist et al. Sep 2010 S
7799264 Trude Sep 2010 B2
7882971 Kelley et al. Feb 2011 B2
7900425 Bysick et al. Mar 2011 B2
7926243 Kelley et al. Apr 2011 B2
D637495 Gill et al. May 2011 S
D637913 Schlies et al. May 2011 S
D641244 Bysick et al. Jul 2011 S
7980404 Trude et al. Jul 2011 B2
8011166 Sheets et al. Sep 2011 B2
8017065 Trude et al. Sep 2011 B2
D646966 Gill et al. Oct 2011 S
8028498 Melrose Oct 2011 B2
8075833 Kelley Dec 2011 B2
D653119 Hunter et al. Jan 2012 S
8096098 Kelley et al. Jan 2012 B2
D653550 Hunter et al. Feb 2012 S
D653957 Yourist et al. Feb 2012 S
8162655 Trude et al. Apr 2012 B2
8171701 Kelley et al. May 2012 B2
8235704 Kelley Aug 2012 B2
8323555 Trude et al. Dec 2012 B2
8539743 Rapparini Sep 2013 B2
20010035391 Young et al. Nov 2001 A1
20020063105 Darr et al. May 2002 A1
20020074336 Silvers Jun 2002 A1
20020096486 Bourque et al. Jul 2002 A1
20020153343 Tobias et al. Oct 2002 A1
20020158038 Heisel Oct 2002 A1
20030015491 Melrose et al. Jan 2003 A1
20030186006 Schmidt et al. Oct 2003 A1
20030196926 Tobias et al. Oct 2003 A1
20030205550 Prevot et al. Nov 2003 A1
20030217947 Ishikawa et al. Nov 2003 A1
20040000533 Kamineni et al. Jan 2004 A1
20040016716 Melrose et al. Jan 2004 A1
20040074864 Melrose et al. Apr 2004 A1
20040129669 Kelley et al. Jul 2004 A1
20040149677 Slat et al. Aug 2004 A1
20040173565 Semersky et al. Sep 2004 A1
20040211746 Trude Oct 2004 A1
20040232103 Lisch et al. Nov 2004 A1
20050035083 Pedmo et al. Feb 2005 A1
20050211662 Eaton et al. Sep 2005 A1
20050218108 Bangi et al. Oct 2005 A1
20060006133 Lisch et al. Jan 2006 A1
20060051541 Steele Mar 2006 A1
20060138074 Melrose Jun 2006 A1
20060151425 Kelley et al. Jul 2006 A1
20060231985 Kelley Oct 2006 A1
20060243698 Melrose Nov 2006 A1
20060255005 Melrose et al. Nov 2006 A1
20060261031 Melrose Nov 2006 A1
20070017892 Melrose Jan 2007 A1
20070045222 Denner et al. Mar 2007 A1
20070045312 Abercrombie, III et al. Mar 2007 A1
20070051073 Kelley et al. Mar 2007 A1
20070084821 Bysick et al. Apr 2007 A1
20070125742 Simpson, Jr. et al. Jun 2007 A1
20070125743 Pritchett, Jr. et al. Jun 2007 A1
20070131644 Melrose Jun 2007 A1
20070181403 Sheets et al. Aug 2007 A1
20070199915 Denner et al. Aug 2007 A1
20070199916 Denner et al. Aug 2007 A1
20070215571 Trude Sep 2007 A1
20070235905 Trude et al. Oct 2007 A1
20080047964 Denner et al. Feb 2008 A1
20080156847 Hawk et al. Jul 2008 A1
20080257856 Melrose et al. Oct 2008 A1
20090090728 Trude et al. Apr 2009 A1
20090091067 Trude et al. Apr 2009 A1
20090092720 Trude et al. Apr 2009 A1
20090120530 Kelley et al. May 2009 A1
20090134117 Mooney May 2009 A1
20090202766 Beuerle et al. Aug 2009 A1
20090293436 Miyazaki et al. Dec 2009 A1
20100018838 Kelley et al. Jan 2010 A1
20100116778 Melrose May 2010 A1
20100133228 Trude Jun 2010 A1
20100163513 Pedmo Jul 2010 A1
20100170199 Kelley et al. Jul 2010 A1
20100213204 Melrose Aug 2010 A1
20100237083 Trude et al. Sep 2010 A1
20100301058 Trude et al. Dec 2010 A1
20110049083 Scott et al. Mar 2011 A1
20110049084 Yourist et al. Mar 2011 A1
20110084046 Schlies et al. Apr 2011 A1
20110094618 Melrose Apr 2011 A1
20110108515 Gill et al. May 2011 A1
20110113731 Bysick et al. May 2011 A1
20110132865 Hunter et al. Jun 2011 A1
20110147392 Trude et al. Jun 2011 A1
20110210133 Melrose et al. Sep 2011 A1
20110266293 Kelley et al. Nov 2011 A1
20110284493 Yourist et al. Nov 2011 A1
20120104010 Kelley May 2012 A1
20120107541 Nahill et al. May 2012 A1
20120132611 Trude et al. May 2012 A1
20120152964 Kelley et al. Jun 2012 A1
20120240515 Kelley et al. Sep 2012 A1
20120266565 Trude et al. Oct 2012 A1
20120267381 Trude et al. Oct 2012 A1
20130000259 Trude et al. Jan 2013 A1
Foreign Referenced Citations (101)
Number Date Country
2002257159 Apr 2003 AU
2077717 Mar 1993 CA
1761753 Jan 1972 DE
P2102319.8 Aug 1972 DE
3215866 Nov 1983 DE
0 225 155 Jun 1987 EP
0 346 518 Dec 1989 EP
0 502 391 Sep 1992 EP
0 505 054 Sep 1992 EP
0 521 642 Jan 1993 EP
0 551 788 Jul 1993 EP
0 666 222 Aug 1995 EP
0 739 703 Oct 1996 EP
0 609 348 Feb 1997 EP
0 916 406 May 1999 EP
0 957 030 Nov 1999 EP
1 063 076 Dec 2000 EP
1571499 Jun 1969 FR
2607109 May 1988 FR
781103 Aug 1957 GB
1113988 May 1968 GB
2050919 Jan 1981 GB
2372977 Sep 2002 GB
S40-15909 Jun 1940 JP
48-31050 Sep 1973 JP
49-28628 Jul 1974 JP
54-72181 Jun 1979 JP
S54-70185 Jun 1979 JP
35656830 May 1981 JP
S56-62911 May 1981 JP
56-72730 Jun 1981 JP
S57-17730 Jan 1982 JP
57-37827 Feb 1982 JP
57-126310 Aug 1982 JP
357-210829 Dec 1982 JP
58-055005 Apr 1983 JP
61-192539 Aug 1986 JP
63-189224 Aug 1988 JP
64-004662 Feb 1989 JP
3-43342 Feb 1991 JP
03-076625 Apr 1991 JP
4-10012 Jan 1992 JP
5-193694 Aug 1993 JP
53-10239 Nov 1993 JP
H05-81009 Nov 1993 JP
H06-270235 Sep 1994 JP
6-336238 Dec 1994 JP
07-300121 Nov 1995 JP
H08-048322 Feb 1996 JP
H08-244747 Sep 1996 JP
8-253220 Oct 1996 JP
8-282633 Oct 1996 JP
09-039934 Feb 1997 JP
9-110045 Apr 1997 JP
10-230919 Feb 1998 JP
H10-167226 Jun 1998 JP
10181734 Jul 1998 JP
3056271 Nov 1998 JP
H11-218537 Aug 1999 JP
2000-229615 Aug 2000 JP
2002-127237 May 2002 JP
2002-160717 Jun 2002 JP
2002-326618 Nov 2002 JP
2003-095238 Apr 2003 JP
2004-026307 Jan 2004 JP
2006-501109 Jan 2006 JP
2007-216981 Aug 2007 JP
2008-189721 Aug 2008 JP
2009-001639 Jan 2009 JP
240448 Jun 1995 NZ
296014 Oct 1998 NZ
335565 Oct 1999 NZ
506684 Sep 2001 NZ
512423 Sep 2001 NZ
521694 Oct 2003 NZ
WO 9309031 May 1993 WO
WO 9312975 Jul 1993 WO
WO 9405555 Mar 1994 WO
WO 9406617 Mar 1994 WO
WO 9703885 Feb 1997 WO
WO 9714617 Apr 1997 WO
WO 9734808 Sep 1997 WO
WO 9921770 May 1999 WO
WO 0038902 Jul 2000 WO
WO 0051895 Sep 2000 WO
WO 0112531 Feb 2001 WO
WO 0140081 Jun 2001 WO
WO 2001074689 Oct 2001 WO
WO 0202418 Jan 2002 WO
WO 0218213 Mar 2002 WO
WO 02085755 Oct 2002 WO
WO 2004028910 Apr 2004 WO
WO 2004106176 Sep 2004 WO
WO 2004106175 Dec 2004 WO
WO 2005012091 Feb 2005 WO
WO 2005025999 Mar 2005 WO
WO 2005087628 Sep 2005 WO
WO 2006113428 Oct 2006 WO
WO 2007047574 Apr 2007 WO
WO 2007127337 Nov 2007 WO
WO 2010058098 May 2010 WO
Non-Patent Literature Citations (133)
Entry
U.S. Appl. No. 13/210,350, filed Aug. 15, 2011, Wurster, et al.
U.S. Appl. No. 13/210,358, filed Aug. 15, 2011, Wurster, et al.
U.S. Appl. No. 13/251,966, filed Oct. 3, 2011, Howell, et al.
U.S. Appl. No. 13/410,902, filed Mar. 2, 2012, Gill.
U.S. Appl. No. 10/566,294 (U.S. Pat. No. 7,726,106), filed Sep. 5, 2006 (Jun. 1, 2010).
U.S. Appl. No. 12/354,327 (U.S. Pat. No. 9,090,363), filed Jan. 15, 2009 (Jul. 28, 2015).
U.S. Appl. No. 12/325,452 (U.S. Pat. No. 7,735,304), filed Dec. 1, 2008 (Jun. 15, 2010).
U.S. Appl. No. 13/407,131 (U.S. Pat. No. 8,671,653), filed Feb. 28, 2012 (Mar. 18, 2014).
U.S. Appl. No. 13/407,131, Jan. 27, 2014 Issue Fee Payment.
U.S. Appl. No. 13/407,131, Dec. 23, 2013 Notice of Allowance.
U.S. Appl. No. 13/407,131, Nov. 4, 2013 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 13/407,131, Oct. 2, 2013 Response after Final Action.
U.S. Appl. No. 13/407,131, Aug. 2, 2013 Final Office Action.
U.S. Appl. No. 13/407,131, Jul. 24, 2013 Response to Non-Final Office Action.
U.S. Appl. No. 13/407,131, Apr. 24, 2013 Non-Final Office Action.
U.S. Appl. No. 13/407,131, Apr. 12, 2013 Response to Restriction Requirement.
U.S. Appl. No. 13/407,131, Mar. 12, 2013 Response to Restriction Requirement.
U.S. Appl. No. 13/407,131, Feb. 12, 2013 Restriction Requirement Filed.
U.S. Appl. No. 12/354,327, Jun. 19, 2015 Issue Fee Payment.
U.S. Appl. No. 12/354,327, Mar. 19, 2015 Notice of Allowance.
U.S. Appl. No. 12/354,327, Feb. 26, 2015 Response to Non-Final Office Action.
U.S. Appl. No. 12/354,327, Feb. 23, 2015 Applicant Initiated Interview Summary.
U.S. Appl. No. 12/354,327, Nov. 26, 2014 Non-Final Office Action.
U.S. Appl. No. 12/354,327, Oct. 8, 2014 Notice of Appeal Filed.
U.S. Appl. No. 12/354,327, Jul. 11, 2014 Final Office Action.
U.S. Appl. No. 12/354,327, Jun. 25, 2014 Response to Non-Final Office Action.
U.S. Appl. No. 12/354,327, Feb. 25, 2014 Non-Final Office Action.
U.S. Appl. No. 12/354,327, Jan. 21, 2014 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 12/354,327, Nov. 13, 2013 Final Office Action.
U.S. Appl. No. 12/354,327, Oct. 29, 2013 Response to Non-Final Office Action.
U.S. Appl. No. 12/354,327, Oct. 22, 2013 Applicant Initiated Interview Summary.
U.S. Appl. No. 12/354,327, Jul. 29, 2013 Non-Final Office Action.
U.S. Appl. No. 12/354,327, Jul. 6, 2011 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 12/354,327, May 5, 2011 Response after Final Action.
U.S. Appl. No. 12/354,327, Apr. 6, 2011 Final Office Action.
U.S. Appl. No. 12/354,327, Feb. 22, 2011 Response to Non-Final Office Action.
U.S. Appl. No. 12/354,327, Nov. 1, 2010 Non-Final Office Action.
U.S. Appl. No. 12/354,327, Sep. 23, 2010 Response to Restriction Requirement.
U.S. Appl. No. 12/354,327, Aug. 23, 2010 Restriction Requirement Filed.
U.S. Appl. No. 12/325,452, May 3, 2010 Issue Fee Payment.
U.S. Appl. No. 12/325,452, Feb. 2, 2010 Notice of Allowance.
U.S. Appl. No. 12/325,452, Dec. 7, 2009 Response to Restriction Requirement.
U.S. Appl. No. 12/325,452, Nov. 24, 2009 Restriction Requirement Filed.
U.S. Appl. No. 10/566,294, Apr. 12, 2010 Issue Fee Payment.
U.S. Appl. No. 10/566,294, Jan. 11, 2010 Notice of Allowance.
U.S. Appl. No. 10/566,294, Nov. 23, 2009 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 10/566,294, Sep. 10, 2009 Final Office Action.
U.S. Appl. No. 10/566,294, Jun. 22, 2009 Response to Non-Final Office Action.
U.S. Appl. No. 10/566,294, Apr. 21, 2009 Non-Final Office Action.
U.S. Appl. No. 10/566,294, Mar. 18, 2009 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 10/566,294, Feb. 13, 2009 Final Office Action.
U.S. Appl. No. 10/566,294, Dec. 12, 2008 Response to Non-Final Office Action.
U.S. Appl. No. 10/566,294, Oct. 27, 2008 Non-Final Office Action.
U.S. Appl. No. 10/566,294, Oct. 6, 2008 Response to Restriction Requirement.
U.S. Appl. No. 10/566,294, Sep. 5, 2008 Restriction Requirement Filed.
“Application and Development of PET Plastic Bottle,” Publication of Tsinghad Tongfang Optical Disc Co. Ltd., Issue 4, 2000, p. 41. (No English language translation available).
Australian Office Action dated Mar. 3, 2011 in Application No. 2010246525.
Australian Office Action dated Nov. 8, 2011, in Application No. 2011205106.
Communication dated Jun. 16, 2006, for European Application No. 04779595.0.
Communication dated Mar. 9, 2010 for European Application No. 09 173 607.4 enclosing European search report and European search opinion dated Feb. 25, 2010.
Certified copy of U.S. Appl. No. 60/220,326, filed Jul. 24, 2000 dated Oct. 29, 2008.
European Search Report for EPA 10185697.9 dated Mar. 21, 2011.
Examination Report dated Jul. 25, 2012, in New Zealand Patent Application No. 593486.
Examination Report for counterpart New Zealand Application No. 545528 dated Sep. 20, 2007.
Examination Report for counterpart New Zealand Application No. 545528 dated Jul. 1, 2008.
Examination Report for counterpart New Zealand Application No. 569422 dated Sep. 29, 2009.
Examination Report for counterpart New Zealand Application No. 569422 dated Jul. 1, 2008.
Examination Report for New Zealand Application No. 550336 dated Mar. 26, 2009.
Examination Report for New Zealand Application No. 563134 dated Aug. 3, 2009.
Examiner Report dated Jul. 23, 2010, Australian Application No. 2004261654.
Examiner Report dated May 26, 2010, in Australian Application No. 2004261654.
Examiner's Report dated Feb. 15, 2011 in Australian Application No. AU200630483.
Examiner's Report dated Mar. 3, 2011 for application No. AU 2010246525.
Examiner's Report for Australian Application No. 2006236674 dated Sep. 18, 2009.
Examiner's Report for Australian Application No. 2006236674 dated Nov. 6, 2009.
Extended European Search Report for EPA 10185697.9 dated Jul. 6, 2011.
Final Office Action for U.S. Appl. No. 10/558,284 dated Sep. 9, 2008.
Final Office Action for U.S. Appl. No. 10/851,083 dated Jun. 12, 2008.
Final Office Action for U.S. Appl. No. 10/566,294 dated Feb. 13, 2009.
Final Office Action for U.S. Appl. No. 10/566,294 dated Sep. 10, 2009.
Final Official Notification dated Mar. 23, 2010 for Japanese Application No. 2006-522084.
International Preliminary Report on Patentability and Written Opinion dated Jun. 14, 2011 for PCT/US2009/066191. 7 pages.
International Search Report and Written Opinion dated Dec. 18, 2012, in PCT/US12/056330.
International Search Report and Written Opinion dated Mar. 15, 2010 for PCT/US2010/020045.
International Search Report and Written Opinion dated Sep. 8, 2009 for PCT/US2009/051023.
International Search Report and Written Opinion for PCT/US2012/050251 dated Nov. 16, 2012.
International Search Report and Written Opinion for PCT/US2012/050256 dated Dec. 6, 2012.
International Search report dated Apr. 21, 2010 from corresponding PCT/US2009/066191 filed Dec. 1, 2009.
International Search Report for PCT/US2004/016405 dated Feb. 15, 2005.
International Search Report for PCT/US2005/008374 dated Aug. 2, 2005.
International Search Report for PCT/US2006/014055 dated Dec. 7, 2006.
International Search Report for PCT/US2006/040361 dated Feb. 26, 2007.
International Search Report for PCT/US2007 /006318 dated Sep. 11, 2007.
IPRP (including Written Opinion) for PCT/US2005/008374 dated Sep. 13, 2006.
IPRP (includinQ Written Opinion) for PCT/US2004/016405 dated Nov. 25, 2005.
IPRP (including Written Opinion) for PCT/US2004/024581 dated Jan. 30, 2006.
IPRP (includinQ Written Opinion) for PCT/US2006/040361 dated Apr. 16, 2008.
IPRP (includinQ Written Opinion) PCT/US2006/014055 dated Oct. 16, 2007.
IPRP (includinQ Written Opinion) PCT/US2007/006318 dated Sep. 16, 2008.
ISR for PCT/US2004/024581 dated Jul. 25, 2005.
Japanese First Notice of Reasons for Rejection dated Aug. 23, 2011, in Application No. 2008-506738.
Japanese Second Notice of Reasons for Rejection dated Jun. 11, 2012, in Application No. 2008-506738.
Manas Chanda & Salil K. Roy, Plastics Technology Handbook, Fourth Edition, 2007 CRC Press, Taylor & Francis Group, pp. 2-34-2-37.
Office Action dated Aug. 14, 2012, in Japanese Patent Application No. 2008-535769.
Office Action dated Dec. 6, 2011, in Japanese Patent Application No. 2008-535769.
Office Action dated Feb. 3, 2010 for Canadian Application No. 2,604,231.
Office Action dated Feb. 5, 2013, in Mexican Patent Application No. MX/a/2008/004703.
Office Action dated Jul. 19, 2011, in Japanese Patent Application No. 2008-535769.
Office Action dated Jul. 26, 2010 for Canadian Application No. 2,527,001.
Office Action dated Nov. 24, 2009 for U.S. Appl. No. 12/325,452.
Office Action dated Oct. 31, 2011, in Australian Patent Application No. 2011203263.
Office Action dated Sep. 5, 2008 for U.S. Appl. No. 10/566,294.
Office Action for U.S. Appl. No. 10/851,083 dated Nov. 11, 2008.
Office Action for U.S. Appl. No. 10/558,284 dated Jan. 25, 2008.
Office Action for U.S. Appl. No. 10/566,294 dated Apr. 21, 2009.
Office Action for U.S. Appl. No. 10/566,294 dated Oct. 27, 2008.
Office Action for U.S. Appl. No. 10/851,083 dated Sep. 6, 2007.
Office Action for U.S. Appl. No. 11/249,342 dated Jun. 10, 2009.
Office Action for U.S. Appl. No. 11/375,040 dated Dec. 1, 2009.
Office Action for U.S. Appl. No. 11/399,430 dated Sep. 4, 2009.
Office Action for Application No. EP 06 750 165.0-2307 dated Nov. 24, 2008.
Office Action for Chinese Application No. 200680012360.7 dated Jul. 10, 2009.
Office Action for Chinese Application No. 2006800380748 dated Jul. 10, 2009.
Office Action for European Application No. 07752979.0-2307 dated Aug. 21, 2009.
Office Action, Japanese Application No. 2008-506738 dated Aug. 23, 2011.
Official Notification for counterpart Japanese Application No. 2006-522084 dated May 19, 2009.
Patent Abstracts of Japan, vol. 012, No. 464; Dec. 6, 1988.
Patent Abstracts of Japan, vol. 015, No. 239, Jun. 20, 1991.
Patent Abstracts of Japan, vol. 2002, No. 09, Sep. 4, 2002.
Requisition dated Feb. 3, 2010 for Canadian Application No. 2,604,231.
Requisition dated Jan. 9, 2013 for Canadian Application No. 2,559,319.
Requisition dated May 25, 2010 for Canadian Application No. 2,534,266.
Taiwanese Office Action dated Jun. 10, 2012, Application No. 095113450.
Related Publications (1)
Number Date Country
20150284128 A1 Oct 2015 US
Provisional Applications (2)
Number Date Country
60551771 Mar 2004 US
60491179 Jul 2003 US
Divisions (1)
Number Date Country
Parent 12354327 Jan 2009 US
Child 14744856 US
Continuations (1)
Number Date Country
Parent 10566294 US
Child 12354327 US