This disclosure relates to a container having a base and a lid.
Containers having a base and a lid are commonly used for storing tobacco products. Such containers and in particular the lids thereof are often made of plastic material and commonly produced by injection moulding. The lid may contain ribs acting as abutments for the side wall of the base when the container is closed.
DE 7218950 U discloses a lid having a guiding cone intended to be inserted into a receptacle and a supporting wall arranged at a distance from the guiding cone for supporting the lid on the rim of the receptacle. Between the guiding cone and the supporting wall are radially extending strengthening ribs arranged at a distance from each other.
A problem with this prior art solution is that an uneven colouring of the lid may be obtained in the region of the supporting wall of the lid.
This problem is in particular pronounced for containers having a lid where the upper edge of the lid is rounded. The rounded upper edge does not itself provide any adequate abutment for the side wall of the base of the container and projections acting as abutment for the side wall of the base when the container is closed are therefore provided.
There is thus a need for an improved container removing the above mentioned disadvantages.
An object of the present disclosure is to provide an inventive container where the previously mentioned problem is at least partly avoided. This object is achieved by the features of any of the independent claims.
The disclosure concerns a container having a base and a lid, wherein the lid comprises a first plurality of abutment projections positioned circumferentially spaced apart on an inside of the lid and configured to contact an upwardly facing abutment surface of a side wall of the base when the base and lid are arranged parallel to each other and pressed together to form a closed container, and a second plurality of abutment projections positioned circumferentially spaced apart on an inside of the lid and configured to contact an upwardly facing abutment surface of a side wall of the base when the base and lid are arranged inclined to each other and pressed together.
Since the second plurality of abutment projections are positioned circumferentially spaced apart on an inside of the lid and configured to contact an upwardly facing abutment surface of a side wall of the base when the base and the lid are arranged inclined to each other and pressed together, the second plurality of abutment projections prevents the lid from attaining a position too far down on the base, i.e. overlapping the base too much, in which position the lid may be difficult pivot down to proper closed position. The second plurality of abutment projections serve to guide the lid to an appropriate position enabling easy closing of the container. Thereby, the container may be closed by pushing on top of the lid also when the lid is inclined in relation to the base. This is particularly important when the lid is positioned on top of the base and subsequently closed by a machine.
Since two pluralities of projections are present, a first plurality for abutting the base when the container is closed and a second plurality for abutting the base when the lid is inclined in relation to the lid during closing of the container, uneven colouring is avoided.
By using two pluralities of projections the flow path for the molten plastic during moulding is more limited, such that an uneven colouring of the lid is eliminated or at least reduced. If only using one projection, as in the prior art solutions, the molten plastic may during moulding flow in two different flow paths towards the exterior of the lid; one along the outer surface of the lid and one through the rib; such that two flow fronts may meet to create an uneven colouring of the lid.
The disclosure also concerns a container having a base and a lid, wherein the lid comprises at least two depressions positioned spaced apart along the circumference of an upper wall of the lid, wherein the depressions being configured such that a downwardly facing surface of said bottom of said depressions contact an upwardly facing abutment surface of a side wall of the base when the base and lid are arranged parallel to each other and pressed together to form a closed container.
The bottom of the depressions preferably extends along a plane parallel to the upper surface of the lid. The bottom of each respective depression transitions from the restriction wall (if there is a recessed area present) or from the upper wall of the lid and to the outer skirt of the lid.
The depressions in the upper wall facilitate contact between the upwardly facing abutment surface of the side wall of the base of the lid when the base and the lid are arranged inclined to each other and pressed together. Thereby, the container may be properly closed by pushing on top of the lid also when the lid is inclined in relation to the base.
By using depressions in the upper wall of the lid for aiding abutment with the base of the container the flow path for the molten plastic during moulding of the lid is more limited than using radial continuous ribs. Uneven colouring of the lid is thereby eliminated or at least reduced.
Further advantages are achieved by implementing one or several of the features of the dependent claims.
In the detailed description of the disclosure given below reference is made to the following figure, in which:
Various aspects of the disclosure will hereinafter be described in conjunction with the appended drawings to illustrate and not to limit the disclosure, wherein like designations denote like elements, and variations of the inventive aspects are not restricted to the specifically shown embodiments, but are applicable on other variations of the disclosure.
As described above and as shown in
The second plurality of abutment projections 7 enables easy closing of the container 1 by downward pushing on top of the lid 3 also when the lid 3 is inclined in relation to the base 2, as visualised in
Without the second plurality of abutment projections 7, depending on the shape of the first plurality of abutment projections 4, inclination angle, etc., the lid 3 may attain a position on the base where the lid is difficult to pivot down to a parallel orientation, and thus difficult to close. This undesired position of the lid 3 is attained when the lid 3 is pushed down too far onto the side wall of the base 2, in which position a lid coupling portion 15 is vertically offset from a corresponding base coupling portion 16. When the lid 3 is too much telescoped over the base portion 2, the lid may prove difficult to close without first lifting the lid 3 a certain degree.
The guiding of the abutment surface 5 of the base 2 accomplished by the second plurality of abutment projections 7 also facilitates manual closing of the container. The second plurality of abutment projections 7 enables that one portion of the second plurality of abutment projections 7 are brought in contact with the abutment surface 5 of the base 2, whereafter a downward force is applied to the lid 3 at a location on the lid 3 substantially opposite the abutment projections of the second plurality of abutment projections 7 that are in contact with the abutment surface 5 (see
By having two pluralities of abutment projections 4, 7, i.e. by separating the abutment projections configured to contact the upwardly facing abutment surface 5 of the side wall 6 of the base 2 when the base 2 and lid 3 are arranged parallel to each other and pressed together to form a closed container from the abutment projections configured to contact the upwardly facing abutment surface 5 of the side wall 6 of the base 2 when the base 2 and the lid 3 are arranged inclined to each other and pressed together, it is avoided that the molten plastic flows to the outer surface of the outer skirt 11 of the lid 3 through different flow paths. In other words, it is avoided that molten plastic flows to the outer skirt 11 of the lid 3 through the first and second pluralities of abutment projections 4, 7, which could otherwise potentially occur if the first and second abutment projections 4, 7 were formed by a single abutment projection. Thereby, uneven colouring of the surface of an upper circumferential corner 14 of the lid 3 is avoided or at least reduced.
That the base 2 and the lid 3 are arranged inclined to each other means that the base 2 and the lid 3 are arranged non-parallel in relation to each other.
The second plurality of abutment projections 7 are configured to contact the upwardly facing abutment surface 5 of a side wall 6 of the base 2 when the base 2 and the lid 3 are inclined with an angle α in the range of 2 degrees to 45 degrees in relation to each other, preferably 5 degrees to 40 degrees in relation to each other, and more preferably 10 degrees to 35 degrees in relation to each other. These ranges are suitable for closing of the container and for guiding of the abutment surface 5 of the side wall 6 of the base 2 from contact with some of the abutment projections of the second plurality of abutment projections 7 to contact with at least some of the abutment projections of the first plurality of abutment projections.
The lid 3 comprises an outer skirt 11 configured to enclose an upper portion of the side wall 6 of the base 2 when the base 2 and the lid 3 are pressed together to form a closed container, see
The first plurality of abutment projections 4 are formed integrally with at least the outer skirt 11 of the lid 3, as shown in
The lid 3 comprises an upper wall 12 and the first plurality of abutment projections 4 are formed integrally with the upper wall 12 of the lid 3, as seen in
The first plurality of abutment projections 4 are formed integrally with the upper wall 12 of the lid 3 and the outer skirt 11 of the lid 3, in particular in the upper circumferential corner 14 of the lid 3, see
In the first embodiment visualised in
The recessed area 9 defines in the first embodiment together with the restriction wall 10 an additional storage compartment, e.g. for storing used tobacco. The additional storage compartment is covered by an additional lid 13, as seen in
In a second embodiment of the disclosure as shown in
In the first embodiment, the second plurality of abutment projections 7 are formed integrally with the upper wall 12 of the lid 3 and the restriction wall 10 of the lid 3. This facilitates moulding of the second plurality of abutment projections 7 and improves the rigidity of the lid 3
The second plurality of abutment projections 7 are offset in relation to the first plurality of abutment projections 4 in a circumferential direction of the lid 3.
This is visualised in
Alternatively, the second plurality of abutment projections 7 may extend at least as far outward, as seen from a centre of the lid towards an outer skirt 11 of the lid 3 along a plane parallel to an upper surface of the lid 3, as the inward extension, as seen from the outer skirt 11of the lid 3 towards the centre of the lid 3 along a plane parallel to the upper surface of the lid 3, of the first plurality of abutment projections 4. In this embodiment, which is not shown in the figures, there is no gap between the first and second plurality of abutment projections in the outward/inward direction and thus the guiding of the abutment surface 5 of the base 2 from the second plurality of abutment projections to the first plurality of abutment projections is smooth and facilitated. Moreover, the risk that the skirt 15 of the lid may fall down between the first and second abutment projections 4, 7 is eliminated.
According to a yet further alternative, the second plurality of abutment projections 7 may extend outwardly, as seen from a centre of the lid 3 towards the outer skirt 11 of the lid 3 along a plane parallel to an upper surface of the lid 3, past the inward extension, as seen from the outer skirt 11 of the lid towards the centre of the lid 3 along a plane parallel to the upper surface of the lid 3, of the first plurality of abutment projections 4. In this embodiment, which is also not shown in the figures, the second plurality of abutment projections extends past the first plurality of abutment projections in the outward/inward direction leaving no gap between the first and second plurality of abutment projections in the outward/inward direction. Thus the guiding of the abutment surface 5 of the base 2 from the second plurality of abutment projections to the first plurality of abutment projections is yet smoother and further facilitated, and the risk that the skirt 15 of the lid may fall down between the first and second abutment projections 4, 7 is eliminated.
The second plurality of abutment projections 7 extend past the downward extension of the first plurality of abutment projections 4 a distance 18 in a vertical direction, see
The first plurality of abutment projections 4 may be shaped as flat ribs that extend in an inward direction, as seen from the outer skirt 11 of the lid 3 towards the centre of the lid 3 perpendicular to the plane of the upper surface of the lid 3, as is shown in
The second plurality of abutment projections 7 are shaped as flat ribs that extend in an outward direction, as seen from a centre of the lid 3 towards an outer skirt 11 of the lid 3 perpendicular to the plane of the upper surface of the lid 3, as is shown in
Each flat rib of the first plurality of abutment projections 4 as well as each flat rib of the second plurality of abutment projections 7 is oriented parallel with a vertical plane, as is shown in
In an alternative embodiment shown in
The number of abutment projections of the first plurality of abutment projections is at least 6, preferably at least 8. In one embodiment, the number of abutment projections of the first plurality of abutment projections is 6-30, preferably 8-20. The number of abutment projections of the second plurality of abutment projections is at least 6, preferably at least 8. In one embodiment, the number of abutment projections of the second plurality of abutment projections is 6-30, preferably 8-20.
The upper circumferential corner 14 of the lid 3 is rounded, as seen in
The outer skirt 11 of the lid 3 and/or the side wall 6 of the base 2 are resilient, and a lid coupling portion 15 located on the outer skirt 11 of the lid 3 is arranged to cooperate with a corresponding base coupling portion 16 located on the side wall 6 of the base 2 by snap action. This is shown in
The lid 3 and the first and second pluralities of abutment projections 4, 7 are made of plastic material. In one embodiment, the base and the lid are made of plastic material. In one embodiment, the container is made of plastic material. By making a product of plastic material a durable product having suitable rigidity is obtained. Further, plastic material is rather cheap. Plastic material is also easy formable into a lid having first and second pluralities of abutment projections as well as a base. The plastic material may be a polymer. The lid 3 and the first and second pluralities of abutment projections 4, 7 are manufactured in one piece by moulding of plastic material. This is an easy and cost effective way of producing a lid having first and second pluralities of abutment projections.
The present disclosure also relates to a third embodiment of the invention shown in
The depressions are preferably evenly distributed along the circumference of the upper wall 12 of the lid 3.
The lid shown in 8a, 8b, 9, 10a, 10b, 11, 12a, 12b, 13 comprise a recessed area 9 as described in conjunction with
The depressions 22 extend, along a plane parallel to the upper surface of the lid 3, from the outer rim of the lid 3 in a direction towards the centre of the lid 3. The outer skirt 11 transitions into the bottom 23 of the depressions 22 along a first arc-shaped transition line 26. The plane of the bottom 23 is perpendicular to the main extension of the outer skirt 11. The bottom 23 of each depression 22 transitions along a second arc-shaped transition line 27 into the restriction wall 10. That is, the depressions 22 extend radially essentially over a distance D between the outer skirt 11 of the lid 3 along a plane parallel to the upper surface of the lid 3 to the restriction wall 10. Distance D is preferably 1-10 millimetres, more preferably 2-8 millimetres and still more preferably 2.5-6 millimetres.
An upwardly directed flange 25 is provided at the second transition line 27 between the restriction wall 10 and the upper surface of the bottom 23 of the depressions 22. The flange 25 is arranged to cooperate with the rim of the additional lid 13 such as to improve the sealing of the additional storage compartment.
At least one depression 22 has a length L in circumferential direction along the upper wall 12 of the lid 3 to an extent such that the rim of an additional lid 13 is accessible to a nail or finger for removal i.e. about 10-30 millimetres.
The depressions may have a height 28 measured from the bottom 23 of the depression to the top of the lid 3 of about 1-4 millimetres, preferably about 1.5-3 millimetres. In other terms, the ratio of the height 28 of the depressions 22 to the total height 29 of the lid 3 is preferably about ⅛-½, more preferably about ⅕-⅓.
The depressions 22 facilitate opening the additional storage compartment by allowing access to the rim of the additional lid 13 at the circumferential position of the depressions 22, as best seen in
The depressions 22 enable easy closing of the container 1 by downward pushing on top of the lid 3 also when the lid 3 is inclined in relation to the base 2. When the lid 3 is inclined in relation to the base 2 at least one of the depressions 22, extending between the outer skirt 11 and the restriction wall 10 of the lid 3, abuts the abutment surface 5 of the side wall 6 of the base 2 due to their even distribution along the circumference of the upper wall 12 of the lid 3. When pushing on the lid 3 the depression 22 guides the abutment surface 5 into a position where it is in contact with the outer part of the downwardly facing surface 24 as seen from the centre of the lid 3. This latter position is seen in
The depressions 22 are configured to contact the upwardly facing abutment surface 5 of a side wall 6 of the base 2 when the base 2 and the lid 3 are inclined at least in the range of 2 degrees-45 degrees in relation to each other. The distribution of several depressions 22 along the circumference of lid 3 ensure that the depressions 22 will facilitate correct closing of the container irrespective of the position of the lid 3 when the lid 3 is inclined in relation to the container prior to closing.
The depressions 22 are recessed in relation to the upper wall 12 of the lid 3 such that when a coupling portion 15 located on the outer skirt 11 of the lid 3 cooperates with a corresponding base coupling portion 16 located on the side wall 6 of the base 2 to snap lock the lid 3 to the container the downwardly facing surfaces 24 of the bottoms 23 of the depressions 22 are in contact with the upwardly facing abutment surfaces 5 of a side wall 6 of the base 2.
The features of
By means of the depressions 22 a well-defined abutment surface of the lid in the closed state is provided, also for relatively large radius-lids, whilst it is avoided that the molten plastic flows to the outer surface of the outer skirt 11 of the lid 3 through different flow paths during manufacturing. Thereby, uneven colouring of the surface of an upper circumferential corner 14 of the lid 3 is avoided or at least reduced.
The present disclosure also relates to a fourth embodiment of the invention shown in
The features of
The invention also encompasses an embodiment (not shown) in which the lid 3 comprises circumferentially spaced depressions 22 as well as first and second pluralities of abutment projections 4, 7 arranged between the depressions 22. In such an embodiment the second plurality of abutment projections 7 are positioned circumferentially spaced apart on an inside of the lid, evenly distributed between the positions of the depressions 22, and configured to contact an upwardly facing abutment surface 5 of a side wall 6 of the base 2 when the base 2 and the lid 3 are arranged inclined to each other and pressed together. The second plurality of abutment projections 7 thereby facilitate proper application of the lid 3 at an inclined angle if the lid 3 is positioned such that a portion of the second plurality of abutment projections 7 rather than one of the depressions 22 are brought in initial contact with the abutment surface 5 of the base 2 when applying the lid 3 at an inclination in relation to the base i.e. at an angle. This is also shown and explained in conjunction with
A lid 3 with first and second pluralities of abutment projections 4, 7, with depressions 22 or with a combination of projections 4, 7 and depressions 22 allows for proper application of a lid 3 also at an angle in relation to the base 2. The invention is especially useful for lids 3 with a rounded upper circumferential corner 14 which would, if no abutment ribs were present, not provide a suitable abutment surface against the base 2. In addition, the previously existing problem of uneven colouring (of lids comprising radially extending continuous ribs) due to uncontrolled flow paths during manufacturing of the lid 3 through moulding is avoided or at least reduced. In all embodiments described herein the flow path for the molten plastic during moulding is limited and thus counteracting flow paths causing uneven colouring are avoided.
The third and fourth embodiments have been disclosed having three depressions 22. However, the number of depressions 22 may be two or more than three, for example four, five, six, seven. Similarly, the depressions 22 are preferably evenly distributed around the circumference but the depressions 22 may alternatively be unevenly distributed. Also, the size, form and shape of the all depressions 22 of the lid are preferably identical but one or more of the depressions 22 may alternatively exhibit a different size, shape and form compared with the other depressions 22. When only two depressions are provided in the lid these depression may have a relatively large length L to compensate for the inherent lack of stability in a design having only two support locations, in particular in designs lacking abutment projections 4.
The shape of the container, as seen from top of the container, is circular but also other, non-showed shapes, are encompassed in the scope disclosure, such as for example elliptic, rectangular or quadratic. In case of rectangular or quadratic shape of the container, the corners of the quadratic shape may be rounded. Preferably, the container is circular. The base and the lid have the same shape as the container as seen from top of the base, lid and container, respectively. Circular containers having circular lid and circular base are visualised in
When the container is circular, the abutment projections of both the first and second plurality of abutment projections 4, 7 extend in a radial direction, as seen in
The maximum dimension of the container is preferably in the range of 40 mm-130 mm, and more preferably 50 mm-120 mm.
When the container is circular, the diameter of the container is in the range of 30 mm-90 mm, preferably 40 mm-80 mm.
The height of the container is in the range of 10 mm-30 mm, preferably 15 mm-25 mm.
All directions and orientations used herein are defined when the container stands on a horizontal surface, wherein the base of the container stands on the horizontal surface and the lid is arranged above the base. Consequently, lower means closer to the horizontal surface and upper means more far away from the horizontal surface in a vertical direction perpendicular to the horizontal surface.
Inward means horizontally from a point at the outer skirt of the container towards the centre of the container. Similarly, outward means horizontally from the centre of the container towards a point at the outer skirt of the container.
Circumferentially means along a path that in each point is parallel to the outer skirt of the container. In case of a circular container, circumferentially implies annularly.
Vertical means perpendicular to the horizontal plane. A vertical plane means a plane perpendicular to the horizontal surface.
In case of a circular container, a radial direction means a direction along the radius of the circular container.
Reference signs mentioned in the claims should not be seen as limiting the extent of the matter protected by the claims, and their sole function is to make claims easier to understand.
As will be realised, the disclosure is capable of modification in various obvious respects, all without departing from the scope of the appended claims. Accordingly, the drawings and the description thereto are to be regarded as illustrative in nature, and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
13155026.1 | Feb 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/052653 | 2/11/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61763976 | Feb 2013 | US |