CONTAINER HAVING A PLURALITY OF CHAMBERS

Information

  • Patent Application
  • 20200148450
  • Publication Number
    20200148450
  • Date Filed
    June 08, 2018
    6 years ago
  • Date Published
    May 14, 2020
    4 years ago
  • Inventors
    • Fayet; Celestin
Abstract
The invention relates to a container with multiple chambers or partial containers, which are connected along an axis that corresponds to a longitudinal axis or parallels to the longitudinal axis or along a spiral form at least in sections. A central element, which can be manufactured together with the partial containers, has proven itself for such a connection. Outside such connection, the partial containers are separated as far as possible by air gaps.
Description
FIELD OF THE INVENTION

The present invention relates to a container, in particular a bottle or a can, which comprises multiple chambers. The chambers are also referred to as partial containers in the following.


BACKGROUND OF THE INVENTION

It is widely known that bottles or cans are particularly suitable for storing and/or transporting liquids. This includes a diverse set of liquids such as, for example, beverages, shampoos, hair conditioners, detergents or the like.


Containers with multiple chambers or partial containers have already been described in the literature. For example, the German utility model document G 85 26 243 U1 discloses a bottle that consists of two half-bottles. Each of the bottles has a separate outlet. The half-bottles are set flush next to each other, where the positive connection is facilitated by flat bottle walls that run parallel with respect to the longitudinal axis of the half-bottles. This particular design solves the problem to store multiple liquids with a bottle that provides both a large storage volume and a compact shape. The latter allows to place the bottle in narrow storage spaces of a refrigerator or similar places. Moreover, due to the separate outlets, the stored liquids do not taste bland after opening and closing each of the half-bottles several times.


The German patent application DE 44 39 869 A1 also describes a bottle with multiple chambers. The aim of the invention described therein is to provide a container, which can store different materials, which, at the same time, is handy and easy to transport, and which can also be produced easily. The solution presented is a bottle for holding liquids with multiple partial containers that have the same cross-section. The partial containers can be joined together to form a unit with the aid of connecting means. The connecting means are designed in such a way that the partial containers can be uncoupled from the unit and re-attached such that they can also be used individually or independently from each other.


The document DE 100 54 587 A1 introduces a device that can be used to hold liquids in at least two chambers that can be separated from each other. These partial containers extend alongside each other in the direction of an interior longitudinal axis, at least along a substantial part of their extent. Due to this arrangement, part of their surface boundaries lie next to each other. This leads to mutual mechanical support of the partial containers.


The German publication DE 42 19 598 A1 introduces a two-chamber bottle with a plastic cap. The bottle consists of two partial containers. Each of the containers comprises a flat wall, which facilitate a positive connection between the partial containers such that they lie next to each other. The connection between the two chambers is secured by connecting means and fixed additionally by a special common plastic cap that closes both chambers. To this end, a specialized closure is considered, which employs an integral hinge, which, for example, can be designed as a snap hinge. The closure is described in more detail in the European patent document EP 0 147 423 B1. The plastic cap is detailed in the German patent application DE 42 19 598 A1. The cap can be secured with a warranty band, i.e. a strip which can be injected onto a lower part via several webs which serve as predetermined breaking points. The warranty band serves as a guarantee of integrity and is particularly important if a bottle is used for food purposes.


Another possibility to assemble a two-chamber bottle is outlined in DE 196 44 007 A1. A drinking or baby bottle is described which can be divided into two chambers by a partition. Two different liquids can be filled into the thus partitioned chambers. The partition represents an interior wall that can be assigned to both chambers, i.e. the walls of the two chambers are only partially independent.


In the aforementioned documents, the chambers touch along an axis or surface parallel to the longitudinal axis of the container. WO 2011/116442 A1 reveals a two-chamber container in which the contact between the two chambers or partial containers runs along a plane that has an inclination with respect to the longitudinal axis of the container.


Another form of the contact surface is considered in WO 2012/117121 A1. The container described therein is also a two-chamber container, but the chambers are in contact along a wavy shaped contact surface.


Besides waveforms, the contact surface can also run along a spiral or a helix. A multi-part bottle with such a contact surface has been disclosed in e.g. U.S. Pat. No. 6,325,229 B1.


In addition to features subject to taste and aesthetics, the shape of the contact surface can also provide technical features. The interlocking of the partial containers described in WO 2011/157851 A1, for example, guarantees the mechanical stability of the connection. In this way, several partial containers can be assembled and transported in a stable arrangement.


The multi-chamber containers known from the state of the art comprise chambers that are connected such that are in direct contact to each other over a significant part of their boundary surfaces. This requires a complex manufacturing process, whereby some of the partial containers still have to be put together afterwards. In addition, the individual chambers of the known containers are in close thermal contact with each other.


OBJECT OF THE INVENTION

It is therefore an object of the present invention to introduce a container with multiple partial containers—also referred to as chambers—that can be used for

    • Food, especially beverages,
    • Cosmetics, especially shampoos and hair conditioners,
    • Pharmaceuticals,
    • Chemicals


and/or

    • Other substances, which are liquid, powdery or the like,


and easily produced. In addition, the individual chambers of partial containers should be thermally insulated from each other to the greatest extend possible.


BRIEF SUMMARY OF THE INVENTION

This object is achieved by the invention as claimed in the independent claim. Advantageous embodiments are described in the dependent claims. The use of the singular form should not exclude a possible multiplicity and vice versa, except for cases where it is explicitly stated.


According to the invention, the container can consist of various materials, such as plastic and/or metal. The joints can also be made of different materials such as, for example, plastic and/or steel. The choice depends on the desired application and in particular on the mechanical stress considered. If the container and the joints are made of plastic, the invention also has the advantage that it can be produced in one piece, for example by injection molding, extrusion and/or injection blow molding. The space that is available between the individual partial containers can be used e.g. for the arrangement of the injection molding tool. Depending on the material used, other processes, such as casting processes and/or the use of a 3-D printer, can also be used for production.


The container according to the invention serves to hold and store a plurality of different fluids and/or granular media. To this end, it comprises at least two partial containers, each with its own, i.e. independent, walls. A first of these containers can hold a first medium and a second one can hold a second medium. The container is designed in such a way that the first medium in the first partial container can be stored separately from the second medium in the second partial container. The partial containers are connected to each other by at least one connecting means, the at least one connecting means being fixed to the walls of the partial containers and separating the walls of the individual partial containers from each other. Thus, the distance between the outer surfaces of the container walls does not fall below a value of 0.2 mm.


The container according to the invention has a body with at least two partial containers. The body has a lower area, also known as the bottom, and an upper area, in which openings of the partial containers are located. This upper area can also have the shape of a bottle neck. The area in between is also referred to as the middle area. The body has an axis which runs centrally within the body from its upper area to its lower area and is referred to here as the longitudinal axis.


Each of the partial containers has its own wall and preferably its own opening. They are shaped and arranged in such a way that they are connected to one another along a predetermined path by means of a central element which extends at least in sections along the longitudinal axis (L) and/or along at least one of the other axes. This predetermined course corresponds to

    • the longitudinal axis of the body,
    • at least one other axis which is substantially parallel to this longitudinal axis, and/or
    • a spiral running around the longitudinal axis and/or one of the other axes.


The connection can extend over the entire length of the body or the length of adjacent partial containers, which can also be spiral-shaped. It can also be established at certain points only, i.e. at individual points along the predetermined course. Besides the connections, the walls of the individual partial containers have a predetermined distance from each other so that they are separated as far as possible by air gaps.


On the one hand, the advantages of air gaps need to be considered such as, for example, thermal insulation and the possibility of introducing production equipment therein. On the other hand, a higher stability can be achieved by a direct connection of adjacent partial containers. Considering these circumstances and the properties of the materials used, it turned out to be useful to have air gaps that extend along the full height of the body or adjacent partial containers at a length that corresponds to at least 50%—preferentially at least 80% or 90%—of the bodies or connections height. Full height here means the sum of the partial lengths of the air gap over the corresponding sections along the body or adjacent partial containers. All air gaps can have the same total length. However, it is also possible that at least one of them has a different length than the other air gaps.


The partial containers can have the same size. However, it is also possible that at least one of them has a different size—and thus a different capacity—than the other containers. The air gaps can also vary in size, for example to allow for a different thermal insulation between adjacent partial containers.


At least one of the partial containers may have more than one chamber, which may also be referred to as sub-container. Each of these sub-containers preferably has its own opening. Preferably there is no air gap between sub-containers of the same partial container. Substances contained in such sub-containers are thus separated from one another and can also be removed separately; however, they are thermally less insulated from one another than substances contained in different partial containers. The use of such sub-containers enables a compact design.


The connection between the partial containers can be made in different ways. In a simple embodiment, it is possible to insert more material at individual points in the area of the specified course by injection molding (or another manufacturing process) in the form of an accumulation of material and thus to glue or weld the partial containers together basically directly.


However, it is also possible that at least some of the partial containers are shaped in such a way that a corresponding central element is subsequently attached to it by means of a positive connection. A connection with a groove into which a corresponding bulge is inserted has proved particularly effective. This has the particular advantage that partial containers can be subsequently connected to one another or can also be used individually. This solution is therefore also referred to as a modular or hybrid concept.


It is also possible to manufacture the mentioned central element, which, for example, can consist of plastic and/or metal, separately and then insert it into the manufacturing process for the partial containers. As soon as the material of the partial containers such as, for example, plastic and/or metal, solidifies, the partial containers are connected to the inserted central element. Preferably, the central element and the associated partial containers are made of the same material. For a stable connection between the central element and the associated partial containers, other processes such as welding, gluing and/or other suitable processes can be used in addition or instead.


The cross-section of preferred central elements can be very different. This is discussed in more detail in connection with the description of preferred embodiments.


Typically, several or all of the partial containers have their own opening. These openings can be closed individually, for example with glued-on foils or suitable sealing plugs. Usually, such a closure will also be present before the first use of a filled container. However, in order to be able to easily open and close the container according to the invention after its first use, an associated closure can be provided, which can be mounted on the upper part of the body, for example by means of


a thread with a corresponding mating thread


a clamping mechanism


and/or the like.


The closure preferably has a large number of flaps which are assigned to the openings of the individual part containers. This means that by opening such a flap, the opening of the associated partial container is released so that a substance (such as a liquid) can be removed from it or filled into it. The flaps employ hinges for easy handling. This can be achieved in various ways, such as by means of integral hinges, flap hinges, or by means of suitable rotatable bearings.


A rotatable bearing is usually designed in such a way that a first bearing part is fixed to the flap and a second bearing part is fixed to the closure and/or the body of the container. The first bearing part, for example, consists of two arms, on each of which a pin is arranged. The second bearing part is the matching counterpart, which allows the first bearing part to be mounted rotatably such as, for example, by means of suitable openings for the pins mentioned. For a space-saving design of such a flap bearing, it is suggested that, according to the invention, one of the bearing parts is located inside the closure and/or the container. The first bearing part also needs to be adjusted accordingly, for example by forming the arms that hold the pins. This design allows an almost flat surface at the top of the container and/or closure.


In a further embodiment, it is also intended that unauthorized opening of the flaps is prevented or at least indicated. For this purpose, predetermined breaking points are provided between the flaps and the rest of the closure. They break when the flaps are opened for the first time. Such breaking points can be made, for example, by means of a guarantee band, as known from DE 42 19 598 A1. It is also possible to use suitable locking elements with predetermined breaking points which engage when the flaps are closed and can then only be opened again via the predetermined breaking points.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Further details and advantages of this invention are explained below using preferred design examples and associated illustrations. Thereby show:



FIG. 1 a side view of a preferred embodiment



FIG. 2 a cross-sectional view along line A-A (FIG. 1)



FIG. 3 a cross-sectional view along line B-B (FIG. 1)



FIG. 4-6 different embodiments of the central element



FIG. 7 another cross-sectional view for the central element along line A-A (FIG. 1)



FIG. 8 a cross-sectional view for two partial containers



FIG. 9 a cross-sectional view with a separate central element



FIG. 10 separate central element (from FIG. 9)



FIG. 11 partial container without central element (from FIG. 9)



FIG. 12 a top view of the closure



FIG. 13 a cross-sectional view for a double pack



FIG. 14 a container with a cover that is located in a recess



FIG. 15 a container with three partial containers and air gaps that run in parallel



FIG. 16 a closure for the container according to FIG. 15.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows a side view of a preferred embodiment of the container according to the invention. This includes


a body 10 with a height H that, in this example, comprises three partial containers 12 (see also FIG. 2), of which only two are recognizable in FIG. 1, and


a closure 20 which, when assembled, is located in the upper part of the body 10 on its neck 11 and closes the three partial containers 12.


The partial containers 12 shown in FIG. 1 are connected to a central element 16, which extends essentially along the longitudinal axis L of the body 10 and which is described in more detail below.



FIG. 2 shows a cross-sectional view along line A-A (FIG. 1), which is located in the central area of the body 10—i.e. between the area of the neck 11 and the bottom of the container. This shows in particular that, in a preferred embodiment, the body 10 has a circular base and the partial containers 12 are connected to the central element 16 and extend outwards from it. The cross-sections of the partial containers 12 represent circular sectors with a sector angle α that is the same for all partial containers. The air gaps 18 shown here are also of equal size and their cross-sections also represent circular sectors, each with a sector angle β. Based on the circular geometry and the use of the same angles for each of the aforementioned elements it follows that:


α+β=120 degrees.


In this embodiment, each angle α is equal to 100 degrees and each angle β equal to 20 degrees. It should be noted, however, that the present invention is by no means limited to these angular values. This also means that the individual partial containers 12 can have an unequal size and thus the angles α can be different for the individual partial containers 12.



FIG. 3 shows a cross-sectional view for neck 11 along line B-B (FIG. 1). It can be seen that each of the partial containers 12 has a cross-section in the neck 11, which also has the form of a circular sector with sector angle α. Since the diameter of the neck 11 is smaller than in the lower part of the body 10, the respective sections of the partial containers are labeled here by 12a. In this embodiment, the air gaps are also present inside the neck 11. Similar to the partial containers 12a, they are also labeled by 18a due to their smaller extent. In the preferred embodiment according to FIGS. 1 and 2, the air gaps 18, 18a run continuously from the bottom of the body 10 to the upper end of the neck 11 with the same sector angle β, so that the partial containers 12, 12a are connected to each other only via the central element 16. This enables a high level of thermal insulation between the individual partial containers 12. It provides the particular advantage that liquids of different temperatures can be filled into the individual partial containers 12 and the corresponding temperature differences can be maintained over a longer period of time. It is also possible to use the air gaps 18, 18a during the manufacturing process for the placement of tools, such as injection molding tools. For the above-mentioned reasons, it has proven to be useful to provide the following range of values for the angle β


β=5-50 degrees, whereby the range between 15 and 25 degrees is particularly preferred.


It should be noted that, due to the circular geometry, the following applies to equally sized partial containers 12: α+β=120 degrees; as already mentioned above.


It goes without saying that the individual partial containers 12 do not have to be of the same size. For example, it is possible that one of them is larger or smaller than the other two. It is also possible that all three are of different sizes. This also applies to the corresponding angles α. In addition, the air gaps 18, 18a and thus the angles β can also vary in size. It is of course also possible that more or less than three of the partial containers 12 are provided. In such cases, of course, there are other relations for the angles mentioned, which are generally known to the expert and which need not be explained here in more detail.



FIG. 4 shows the central element 16 in cross-sectional view. As it runs from the bottom of the body 10 to the neck of the body 11 in the preferred embodiment, this view corresponds to an enlargement of the corresponding illustrations from FIGS. 2 and 3. Here, however, it can be seen more clearly that the central element 16 has the form of a cylindrical tube, which has a cavity on the inside and whose outer wall is connected to the individual partial containers 12.



FIGS. 5 and 6 show alternatives for a suitable central element 16 in cross-sectional views.


In FIG. 5, the cross-section of the central element 16 has a star-like shape in which each arm extends to one of the partial containers 12. However, it is also possible that at least one of the partial containers 12 is connected to more than one arm of the central element 16. The embodiment according to FIG. 5 provides very good thermal insulation between the individual partial containers 12, while the embodiment according to FIG. 6 provides a better connection between the central element 16 and the individual partial containers 12 and thus better mechanical stability.



FIG. 7 shows an alternative cross-sectional view along line A-A (FIG. 1). It shows an alternative for the central element, which is referred to as 16′ in the following. It can be seen that the central element 16′ has further arms 17 which protrude into the air gap 18 and thus enable a mechanically more stable connection between the central element 16′ and the individual partial containers 12.



FIG. 8 shows a further alternative for the design of the body 10 in cross-sectional view, whereby this representation refers to the central area in particular. The main difference compared to the embodiments described above is that, here, only two partial containers are used (labeled by 112), which are designed in such a way that they are connected to each other by means of a central element 116 and the associated air gaps 118 have a cross-section with two parallel longitudinal sides. This means that the cross-sections of the air gaps 118 do not represent circular sectors.


Such a two-chamber design is easier to produce than a container with three or more chambers. Furthermore, the design is particularly suitable for beverage cans which are usually made of metal, such as sheet, aluminum or the like, where deep drawing or punching is often used without a welding process. For the sake of completeness, a container with two partial containers 12 and/or 112 can also be designed in such a way that one or both of the air gaps 18 and/or 118 have the cross-section of a circular sector, facilitating a prominent aesthetic appearance.


In the embodiments of the container according to the invention or body 10 described so far, a central element 16 and/or 116 is provided in each case, which is firmly connected to the associated partial containers during the production process. However, the container in accordance with the invention is by no means limited to this. Further designs are possible, whereby several of the partial containers 12 and/or 112 form a common body 10 only after being assembled together. This will be discussed in more detail below.



FIGS. 9-11 describe such a modular design. These figures show the central area of a body 10 in cross-sectional view with two partial containers 212 and a central element 216. The main difference as compared to the embodiments described above is that, after completion of the production process of the individual partial containers 212, the partial containers are not firmly connected to each other or via the central element 216. Instead, it is possible to connect the partial containers 212 by means of the central element 216 after their manufacture and, if necessary, also after filling them. It is also possible to separate the partial containers 212 again, provided that the connection between the partial containers 212 and the central element 216 is designed accordingly.


To this end, the central element 216 is designed in such a way that a middle part 217 is present, which has a bulge 219 at each of its ends. In addition, each of the partial containers 212 has a groove 214 which is designed and arranged such that one of the bulges 219 can be inserted there so that the two partial containers 212 can be interlocked by means of the central element 216. Such an insertion of the bulges 219 can be done for example by


Sliding in from below, i.e. from the bottom of the body 10,


Sliding in from above, i.e. from the neck 11 of the body 10


and/or by


lateral engagement of the bulges 219 in the grooves 214, which is facilitated by the elasticity of the material used and by a suitable design of the two elements 214, 219.


Preferably, at least one of the bulges 219 has a latching element (not shown in the figures) which, together with an associated counterpart located at a suitable location of the associated groove 214, allows it to be fixed against displacement between the central element 216 and the corresponding partial container 212. Depending on the design of the latching elements, this fixation can be


Easily released by applying a force, as with a spring that engages in a trough, or


Permanent, as with a lock that works according to the snap-fit principle.


The partial containers 212 can also be used individually, i.e. without a connection to one of the other partial containers 212 by means which close the opening of the corresponding partial container 212 even without using the closure 20. Such means can be, for example, a foil that is welded or glued on after filling. A sealing plug is also conceivable that can be inserted into the correspondingly designed opening of the partial container 212, for example by means of a screw connection with an internal thread and/or an external thread at the openings of the partial container 212, a crimp connection and/or the like. It is also possible that at least some of the partial containers 212 have more than one opening.


It should be noted that the illustrations shown in FIGS. 9-11 are only schematic and for reasons of clarity were described with respect to the body 10 consisting of two partial containers 212. It goes without saying that with the appropriate design of the central element and the partial containers, the principle described can also be implemented with three or more partial containers. Corresponding solutions are obvious for the expert on the basis of the above explanations and are thus not described in more detail. It is also possible that the central element 216 has a different cross-section in the area of the neck 11, for example along line B-B (see FIG. 1) than in the central area of the container. It is conceivable that the central element 216 has a cross-section in the area of the neck 11 that has already been described in previous embodiments, in particular the ones shown in FIGS. 4, 5, 6, 7, and 9. With these designs, it is possible that the container with the detachable partial containers 212 (according to FIGS. 9-11) has the same cross section in the area of the neck 11—for example along the line B-B (FIG. 1)—as the embodiments described above. This has the advantage that the same closures 20 can be used, regardless of whether the partial containers are detachable or not.


Another way of connecting several of the partial containers 12, 112 is to connect them directly, i.e. without forming a special central cement. Such connections are preferably established during the production process such as, for example, during an injection molding process by accumulation of material. Preference is given to point-wise connections whose number along the vertical axis of the body 10 depends on its height. Two to four such connections are preferably.


The closure 20 shown in FIG. 1 consists essentially of a cover 22, from the outside of which a collar-shaped wall 24 projects downwards. The closure 20 has means in its interior by which it can be attached to the body 10, in particular to its neck 11. Such means are for example


Nubs 30, which get stuck in the air gaps 18 when the closure 20 is attached (see FIG. 12),


A thread with corresponding mating thread on the neck 11 (not shown in the Fig.),


And/or the like.



FIG. 12 shows the top side of the closure 20 and thus of the cover 22 for a container according to FIGS. 1-3 as a schematic top view. The cover 22 essentially consists of a circular disc with the following elements:


A central part 26, which projects into the interior of the closure 20 and is inserted into the opening of the central element 16 when assembled in order to center the closure 20 on the neck 11.


Three webs 28, which protrude into the interior of the closure 20 and, in the assembled state, over the air gap 18 therein.


Three nubs 30, which also protrude into the inside of the closure 20 and, in the assembled state, into the air gap 18 therein to fix the closure 20.


Three flaps 32, which are designed and arranged in such a way that each of them is arranged above one of the partial containers 12 in the mounted condition of the closure 20. The flaps 32 are hinged to their inner side 34, i.e. the side facing the central part 26, so that they can be swiveled upwards accordingly. A suitable and preferred joint for this is, for example, an integral hinge or a snap hinge, as described in DE 42 19 598 A1. Furthermore, it is also possible to use flap bearings, in which pins are rotatably mounted in corresponding openings. It is particularly advantageous if these bearings are inside the closure 20. This enables the cover 22 to have an almost flat surface without any disturbing mechanical parts.


Three warranty bands 36, which are arranged on the outside of the flaps 32 and are described in more detail, for example, in DE 42 19 598 A1.


The embodiments described so far are only examples. Various variations and modifications of the described embodiments are possible, such as for example:


The number of partial containers (12; 112; 212) can also be increased if several bodies 10 are connected to each other. A corresponding example is shown in FIG. 13 in the form of a “double pack”. The two bodies 10, 10′ shown there have two partial containers 112 each and are connected to one another via a connecting element 300.


The cross-section of the central element 16, 116 can have a variety of shapes. In addition to the shapes already described, polygonal shapes are also possible, i.e. shapes that are triangular, square, etc. Such shapes can be used to increase the rigidity of the container.

    • The central element 16, 116 is not arranged continuously along the longitudinal axis of the body 10, but only in sections. This also means that several such sections of the central element 16, 116 can be present. It is also possible that a first section has a first shape (as shown for example in FIGS. 4, 5, 6, 7, 9) and at least one further section has a different shape.
    • The partial containers 12 may be designed such that the upper part of the body 10 also has a diameter equal to or similar to the one of its middle and/or lower part. In that case, the corresponding closure 20 needs to be designed accordingly.
    • Each of the partial containers 12 can have its own closure for its opening.
    • The container according to the invention can be designed as a beverage can with several partial containers.
    • The size of the container according to the invention can be very different and also include large containers for industrial purposes. Since these can be bulky and heavy in their filled state, it is planned to provide the bottom of the container with transport slots so that tines of a forklift or the like can be inserted there for transport.
    • The closure 20 also allows many variations and modifications. For example, it is possible that, in addition to or instead of the warranty bands 36, 32, latching elements are provided on the outer sides of the flaps with the corresponding counterpart on the cover 20 and/or on the wall 24. To this end, it is important that
      • The connection between latching element and counterpart is virtually inseparable and that
      • The latching element and/or the counterpart has a predetermined breaking point which is damaged when a user opens the associated flap 32.
    • Preferred latching elements work according to the snap connection principle, such as a snap hook, which is inseparably connected to a suitable counterpart.
    • The neck 211 can be designed in such a way that it forms a recess above the partial container 12 (see FIG. 14). A closure (here labeled by 220) is inserted into it that is held there by suitable means such as, for example, a thread, a snap-in connection with grooves or the like.
    • FIG. 15 shows schematically a further embodiment in cross-sectional view of the middle area, i.e. approximately at the level of line A-A (FIG. 1). It comprises three partial containers 312′, 312″, 312″ (also labeled jointly by 312) that are arranged and designed in such a way that the associated air gaps 318′, 318″ (also labeled jointly by 318) run essentially parallel. The adjacent partial containers 312′ and 312″ are connected by a connection 316″ and the adjacent partial containers 312″ and 312″′ are connected by a connection 316″. Each of the connections 316′, 316″ (also labeled jointly by 316) extends along an axis that is substantially parallel to the longitudinal axis L. Both connections 316 can be designed in a variety of ways, as already described in connection with the previous embodiments, i.e. in particular that they can be established by a central element, by an accumulation of material and/or the like. They can be the same or different from one another.
    • FIG. 16 shows a schematic top view of a closure 320 which is suitable for the container according to FIG. 15. The closure 320 has three flaps 332′, 332″, 332′″, which can be swiveled around associated joints 340′, 340″ and/or 340″, respectively, and, thus, uncover the opening of the associated partial container 312.
    • At least some of the partial containers 12, 212, 312 can be designed such that they comprise more than one chamber, which may also be called a sub-container. Each of these sub-containers has its own opening, which can be made separately accessible if the corresponding closure is appropriately designed. In principle, any suitable central element can be used for such a design. If it has a star-shaped cross section (similar to FIG. 5), an embodiment is preferred where at least one arm leads to each of the lower sub-containers.
    • At least some of the partial containers 12, 112, 212, 312 can have a spiral shape at least in sections, i.e. they can be helical or spiral-shaped. This means that they wind around the longitudinal axis L and/or around another axis which is essentially parallel to the longitudinal axis L. Such a spiral shape may be provided over the entire height H of the body 10, i.e. from the openings to the bottom, below the neck 11 and/or at other sections of the body 10.


The course of the associated partial container connections can be designed in various ways, such as in particular:


Along the longitudinal axis L or an axis substantially parallel thereto, where a large number of sectional connections between the partial containers are preferred.


and/or


Spirally along the spiral forming the partial containers.


The type of partial container connections can be diverse, i.e. in particular by means of a suitable central element, by means of suitable material accumulations and/or the like.


It is also possible that, for the spiral-shaped embodiments, there is an air gap over the entire length of adjacent partial containers or only as far as possible. Such a design of the partial containers causes turbulence of the substances—such as liquids, etc.—during pouring. This ensures good mixing, both within the respective partial container and in the area of the openings.


It is also possible that only one of the partial containers has a spiral shape, at least in sections. It can be wound around further partial containers. A suitable connection of this spiral-shaped partial container exists at least to one of the other partial containers that it encompasses. Suitable manufacturing processes must be used for such designs, employing, for example, a 3-D printer.


GLOSSARY



  • Container



A container is an object that has at least one chamber. Its main purpose is to separate its content from its environment.

  • Fluid medium


A fluid medium is a gas or a liquid.

  • Granular medium


A granular medium consists of many small, solid particles such as grains or balls. Examples of granular media are grainy materials such as sand, pulverulent materials such as powder or, in large quantities, loose materials such as rubble, gravel or boulders.


REFERENCE NUMERALS




  • 10 Body


  • 11, 211 Neck


  • 12, 112, 212, 312 Partial container


  • 12
    a Partial container in the vicinity of 11


  • 16, 116, 216 Central element


  • 17 Arms of 16


  • 18, 118, 318 Air gaps


  • 20, 220, 320 Closure


  • 22 Cover


  • 24 Wall


  • 26 Central part


  • 28 Webs


  • 30 Nubs


  • 32, 332 Flaps


  • 34 Inner side of 34


  • 36 Guarantee band


  • 214 Grooves


  • 217 Middle part of 216


  • 219 Bulges of 216


  • 300 Connecting element


  • 316 Connections


  • 340 Joints

  • H Height of the body

  • L Longitudinal axis

  • α, β Angles



CITED PRIOR ART DOCUMENTS
Patent Documents

DE 44 39 869 A1


DE 100 54 587 A1


DE 42 19 598 A1


DE 196 44 007 A1


WO 2011/116 442 A1


WO 2012/117 121 A1


U.S. Pat. No. 6,325,229 B1


WO 2011/157 851 A1


Utility Model Documents

DE 85 26 243 U1

Claims
  • 1. Container for receiving and storing a plurality of different fluid and/or granular media; wherein the container comprises a body (10) and at least two partial containers (12; 112; 212; 312) each having its own walls;wherein a first partial container can receive a first medium and a second partial container can receive a second medium, andthe container is designed in such a way that the first medium in the first partial container can be stored separately from the second medium in the second partial container;the partial containers (12; 112; 212; 312) being connected to one another by at least one connecting means (16; 116);the at least one connecting means (16; 116) being fixed to the walls of the partial containers (12; 112; 212; 312);the at least one connecting means (16; 116) separating the walls of the individual partial containers (12; 112; 212; 312) from each other;where the distance between the outer surfaces of the walls is not less than 0.2 mm;wherein at least one of the connecting means (16; 116) is a central element (16; 116) extending from the bottom of the body (10) to the neck (11) thereof and having the shape of a cylindrical tube which has a cavity inside and the outer wall of which is connected to the individual partial containers (12; 112; 212; 312);wherein a closure (20; 320) is provided that is mounted on the upper part of the body (10); andwherein several or all of the partial containers (12; 112; 212; 312) have their own opening, which, with the closure (20) mounted and closed, are sealed from the openings of the other partial containers (12; 112; 212; 312) and/or from the outside world;wherein the closure (20; 320) has at least one flap (32; 332) which, when the closure (20; 320) is mounted, is associated with one of the openings of the partial containers (12;112; 212; 312) and uncovers said opening with respect to the outside world when the flap (32; 332) is open.
  • 2. Container having a body (10) of height (H) and at least two self-contained partial containers (12; 112; 212; 312), wherein the partial containers (12; 112; 212; 312) are connectedalong the longitudinal axis (L) of the body (10) oralong at least one other axis substantially parallel to this longitudinal axis (L) oralong a spiral running about the longitudinal axis (L) or one of the other axesat least in sections with one another by means of a central element (16; 116),which extends at least in sections along the longitudinal axis (L) and/or at least one of the other axes, and,apart from such connection, are separated from each other by an air gap (18; 118; 318), where the air gap (18; 118; 318) along adjacent partial containers (12; 112; 212; 312) has a total length whose value corresponds to at least 50% of the height (H); andthe central element (16; 116) extends from the bottom of the body (10) to the neck (11) thereof and having the shape of a cylindrical tube which has a cavity inside and the outer wall of which is connected to the individual partial containers (12; 112; 212; 312);wherein a closure (20; 320) is provided that is mounted on the upper part of the body (10); andwherein several or all of the partial containers (12; 112; 212; 312) have their own opening, which, with the closure (20) mounted and closed, are sealed from the openings of the other partial containers (12; 112; 212; 312) and/or from the outside world;wherein the closure (20; 320) has at least one flap (32; 332) which, when the closure (20; 320) is mounted, is associated with one of the openings of the partial containers (12; 112; 212; 312) and uncovers said opening with respect to the outside world when the flap (32; 332) is open.
  • 3. Container according to claim 2, whereinat least one of the partial containers (12; 112; 212; 312) has a spiral shape at least in sections.
  • 4. Container according to claim 2, whereinat least one of the partial containers (12; 112; 212; 312) has a different size than the other partial containers (12; 112; 212; 312).
  • 5. Container according to claim 2, whereinit comprises more than two partial containers (12; 112; 212; 312) and the air gap (18; 118; 318) between a first pair of adjacent partial containers (12; 112; 212; 312) is different from the one between a second pair of adjacent partial containers (12; 112; 212; 312).
  • 6. Container according to claim 1, whereinat least one of the partial containers (12; 112; 212; 312) has at least two chambers.
  • 7. Container according to claim 6, whereinat least one of the partial containers (12; 112; 212; 312) with at least two chambers has openings for each of the chambers.
  • 8. Container according to claim 2, whereinthe connection between the central element (216) and at least one of the partial containers (212) is realized by a groove (214) on one of the two parts (212 and/or 216) and a bulge (219) on the other of the two parts (216 and/or 212), the bulge (219) being designed such that it can be inserted into the groove (214) to form a positive connection.
  • 9. Container according to claim 2, whereinthe central element (16; 116; 216) has a cross-section at least in sections which is circular, ring-shaped, star-shaped, polygonal, helical or propeller-shaped.
  • 10. Container according to claim 2whereinthe central element (16; 116; 216) has a first cross-section with a first shape in a first section of the body (10) and a cross-section with a second shape in a second section of the body (10).
  • 11. Container according to claim 2whereinthe central element (16′) has at least one arm (17) which protrudes into one of the air gaps (18; 118) between two adjacent partial containers (12; 112; 212; 312).
  • 12. (canceled)
  • 13. (canceled)
  • 14. Container according to claim 1, whereinthe at least one flap (32; 332) is borne hinged.
  • 15. Container according to claim 1, whereina flap bearing is provided for the hinged bearing of the at least one flap (32; 332), which has a first bearing part that is mounted rotatably on a second bearing part, the second bearing part being located inside the closure (20; 320) and/or the body (10).
  • 16. Container according to claim 1, whereinthe at least one flap (32; 332) is secured against unauthorized opening by predetermined breaking points (36).
  • 17. Container according to claim 1, whereinthe connection between the at least one connecting means and at least one of the partial containers (212) is realized by a groove (214) on one of the two parts (212 or 216) and a bulge (219) on the other of the two parts (216 or 212), the bulge (219) being designed in such a way that it can be inserted into the groove (214) establishing a positive connection with the latter.
  • 18. Container according to claim 1, whereinthe at least one connecting means has, at least in sections, a cross-section which is circular, annular, star-shaped, polygonal, spiral or propeller-shaped.
  • 19. Container according to claim 1, whereinthe at least one connecting means has a first cross-section with a first shape in a first portion of the body (10) and a cross-section with a second shape in a second portion of the body (10).
  • 20. Container according to claim 1, whereinthe at least one connecting means has at least one arm (17) which projects into the space between two adjacent partial containers (12; 112; 212; 312).
Priority Claims (1)
Number Date Country Kind
10 2017 006 857.7 Jul 2017 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2018/065119 6/8/2018 WO 00