This application claims benefit of Switzerland Patent Application No. 01268/13, filed Jul. 16, 2013, which is hereby incorporated herein by reference in its entirety
This disclosure relates to container sealing members, and more particularly to container sealing members having a releasable, and, in some cases, a removable portion.
It is common to seal a bottle, jar, or other container with a screw cap and a sealing member, often called a seal liner or inner seal, across the mouth of the container. Typically, this sealing member can provide protection, evidence of tampering, a vapor barrier or, in some cases, a hermetic seal. In some instances, these sealing members can be provided in a two-piece sealing member configuration with the sealing member combined with an upper cap liner portion.
The sealing member is commonly a laminate of layers that often includes at least a heat sensitive sealing layer or bonding layer covered by a metal foil layer. The heat sensitive layer is a lower layer within the laminate and adheres the sealing member to the rim or mouth of a container. In a two-piece configuration, the sealing member is temporarily bonded to the upper cap liner. In this configuration, the upper cap liner often includes a compressing agent (e.g., pulp board, synthetic foam, or the like) that is adjacent the interior of the screw cap and positioned at the opposite end of the sealing member from the heat sensitive sealing layer. There is usually a release layer, such as wax, in the two-piece configurations between the upper cap liner and the lower sealing member. The release layer is effective to initially hold the upper cap liner to the lower sealing member to form a unitary or one-piece structure to aid in assembling the cap and container, but then the release layer permits the sealing member to separate between these two portions upon cap removal.
In use, the sealing member is inserted into a container or bottle cap at a closure manufacturer. The cap and sealing member combination may then be provided to an end user that places the cap onto a container mouth where the sealing member is induction or otherwise heat sealed to the upper rim of a bottle or container. During induction sealing, an electromagnetic field generated by induction heating equipment produces heat in the metal foil layer of the sealing member to activate the heat sensitive sealing layer for bonding to the rim or mouth of a container. At the same time, if the sealing member is a two-piece configuration, the heating may also cause the release layer to separate the upper cap liner from the lower sealing member. In the case of a two-piece assembly using a wax layer, the induction heating causes the wax to melt and be absorbed by the compressing agent in the upper cap liner. This converts the one-piece sealing member into two pieces, with the sealing member and its heat sensitive sealing layer bonding to the container rim, and with the melted wax being absorbed by the compressing agent in the upper cap liner, the liner separates and stays in the cap. The compressing agent generally remains lodged in the inner portion of the cap as a cap liner, and the sealing member remains adhered to the container when the cap is removed from the bottle by the consumer.
When the cap is removed, the consumer, depending on the application, then removes, tears, penetrates, or breaks the sealing member from the container rim before the contents of the container may be accessed. The cap may then be screwed back onto the container if desired. Upon initial removal of the cap, a missing or damaged sealing member can alert the consumer that the contents of the container may have been tampered with prior to purchase.
Many applications, however, call for a laminate structure forming the sealing member to remain on the container, but not be readily pierced unless a tool, such as a knife or other relatively sharp object, pierces the sealing member. In such cases, it is common for the laminate forming the sealing member to include one or more layers of a relatively strong polymer film, such as polyethylene terephthalate (PET) or nylon, to impart resistance to puncturing and tearing. In many cases, the top layer of the laminate forming the sealing member is PET. However, there is a shortcoming in such designs because the PET layers are difficult to pierce without a tool, and the consumer typically will not be able to pierce such laminates with just their finger. Thus, if consumers don't have ready access to a sharp object, they can be frustrated upon trying to pierce the sealing member with their finger or other blunt object.
This disclosure relates to fracturing film and to laminate sealing members or inner seals that are heat sealed or adhered to the rim surrounding the opening of a container. In one aspect, the laminate sealing members herein include at least one fracturing seam or frangible line of weakness that is configured to be fractured, torn, or broken so that a portion or panel of the sealing member can be released from other portions of the sealing member. In some approaches, the sealing members may include more than one frangible line of weakness so that upon tearing, a panel or portion of material between the lines of weakness can be released and removed from the sealing member. These configurations permit a consumer to tear the one or more frangible lines of weakness to release and, optionally, remove a portion of the seal in order to expose and allow access to the laminate structure below and/or the contents of the container depending on the structure of the laminate. In some cases, the structures herein permit release and, optionally, removal of a laminate panel to expose a more easily piercable or puncturable portion of the sealing member so that the sealing member provides puncture resistance in its undisturbed form and, upon panel release, provides a sealing member with at least a portion that a consumer can easily puncture without a sharp object.
In other aspects, the sealing member structures herein permit initial configurations to include strong full layers of material, such as PET and Nylon, that impart resistance to piercing and puncturing so as to provide an enhanced level of protection during manufacturing, initial handling, and distribution. Upon subsequent consumer tearing of the frangible lines of weakness, the sealing members herein may then expose other layers therebelow that can be more readily breached or pierced without requiring the use of a piercing tool or other sharp implement. For instance, the initial seal with the full, puncture resistance layers may not be piercable by a user's finger or a common drinking straw, but upon tearing the one or more frangible lines of weakness and subsequent panel release, the released panel could expose sealing member layers (such as polyolefin, foils, and the like materials) that are more easily punctured by a finger and/or a common drinking straw.
The general descriptions of sealing members noted above may be tabbed or non-tabbed versions of sealing members. If tabbed, the sealing members may include peripheral side extending tabs that are associated with the frangible lines of weakness to help aid in tearing therealong. The sealing members may also include top-mounted tabs; such as, tabs that are defined wholly within the perimeter of the sealing member. In the case of a sealing member including a single frangible line of weakness, upon tearing by a consumer, a panel can be released and pivoted upwardly to form a single, top-mounted pull-tab defined wholly within a perimeter of the sealing member. A consumer can then use this formed pull tab to remove the sealing member from a container.
With the above background and summary in mind, different approaches to the sealing members with the one or more fracturing seam or frangible line of weakness herein will first be described, and then more specifics of the various constructions and materials will be explained thereafter. In this disclosure, use of the terms “upper” and “lower” with respect to surfaces of the sealing member components is in reference to an orientation of the components as generally depicted in
The sealing members herein may include a one-piece or two-piece sealing member provided as a laminate formed from flexible sheet materials that include a seal laminate with one or more frangible lines of weakness for permitting release of and the optional removal of a panel or portion of the sealing member. The sealing members may include various types of gripping tabs, which in some approaches, are aligned with one or more of the frangible lines of weakness to aid in tearing therealong or the sealing members may be free of any tabs. At least in certain approaches, the sealing members herein may include within the laminate a lower heat sealable layer for bonding to the rim of a container. Above or on top of the heat sealable layer may be a membrane or metal layer. The membrane or metal layer may be foil, aluminum, tin, metalized polymers, the like, as well as combinations thereof. The heat sealable layer may include a hot melt adhesive for bonding or securing the seal to the container rim by a heat seal or induction sealing apparatus, which heats the membrane layer and melts the heat sealable layer to bond the seal to the rim of the container.
In one approach and as generally shown in the
So configured, a consumer can tear off the strip of material (i.e., the panels 14) as generally shown in
In other approaches, the panel 14 could be part of a hologram or other visual anti-counterfeiting element that extends across the entire top layer of the seal 10. Upon peeling of the panel 14 by a consumer, the hologram is destroyed. There can also be printing on the underside of the panel 14 or on the exposed panel surface 15, which could be part of a game, branding, couponing, or further anti-counterfeiting elements. Removal of the panel 14 also creates an area (such as exposed portion 15) of the still sealed container with significantly different physical properties as compared to the remaining, opposing side portions 30 of the sealing member (see, e.g.
As shown in the cross-sectional view of
To permit the tear strip or panel 14 to be removable upon tearing along the frangible lines of weakness 12, the seal 10 may also include a partial release layer 25 that is a narrow strip of material that does not extend the full width of the seal, but generally corresponds to the tear strip 14 between the two frangible lines of weakness 12. The release layer 25 is bonded to the top layer 26 via the bonding layer 24, but it is not bonded to the layers below it and, thus, not bonded to portion 15 or layer 22 (or other layer above layer 22 if included). As shown in
The partial release layer 25 helps form two partial bonds on opposite sides thereof forming the opposing portions 30 because layer 25 is bonded to the top layer 26 (or other layers) and is adjacent to, but not bonded to, the layers below it. In this approach, partial release layer 25 helps form the tear strip 14 because it prevents the top layer 26 and bonding layer 24 from adhering to the layers below it across at least a portion 15 of the seal as generally shown in
Turning back to
As shown by the approach of
In this aspect of the disclosure, upon tearing along the single frangible line of weakness 12, a panel 14 is released and permitted to be pivoted upwardly along a pivot line 104 to form a pull tab 102 that is defined wholly within a perimeter of the sealing member 100 as generally shown in
Alternatively, the tab 102 may be used for grasping, such as between the thumb and fore finger so that a consumer can use the tab to pull off the entire sealing member 100 (or certain portions thereof if needed for a particular application) from the container rim. As appreciated, this formed tab 102 is a non-side-protruding pull tab that is formed by the consumer, in use, after the container is sealed and covered with the cap. This construction of a pull tab is advantageous because the tab 102 is initially secured within the sealing member disk on all sides and, thus, is protected during the heat seal, assembly, handling, and cap screwing operations in view of the tab 102 being initially connected to the remainder of the seal along the non-fractured frangible line of weakness 12 on one side and by the living hinge/pivot line 104 on the other side. Thus, a grasping, free end 106 of the tab is protected from damage and wrinkling during heat sealing and assembly only to be released and/or formed by the consumer upon tearing along the line 12. This construction permits thinner tab materials in view of the tab securement and protection during assembly.
Similar to the previous approach,
Turning now to
As mentioned above, because the release layer 25 within the laminate is not secured or bonded to the layers below it, it may form a small air gap 245 under it and above the layers directly below. In view of the release layer forming this small air gap 245, the side tab 244 (such as top layer 26, bonding layer 24, and release layer 25) will tend not to fold or bend downwardly over any rim when secured to a container. The layers below the air gap, (such as heat seal layer 20 and foil layer 22) will tend to fold over the side of the container rim or neck due to the cap and heat sealing process during cap assembly. More specifically, the polymer films and resins used to form the layers 24, 25, and 26 tend to have molecular memory and be more resilient so that such layers when combined with the air gap will tend to remain relatively flat in the areas above the air gap because they are not bonded to the layers below. Thus, these layers will tend to stay relatively flat and extend outwardly over the container rim land area to form an outwardly extending tab as generally shown in
So constructed, a lower portion 249 of the tab including the heat seal layer 20 and foil layer 22 will be folded over the container rim and a second portion 251 of the tab including top layer 26, bonding layer 24, and release layer 25 remain relatively flat and protrude more outwardly for a consumer to grasp and peel off the removable tear strip 214. This difference in memory or resiliency of the upper and lower portions of the seal laminate 249 and 251 would cause a physically and visually recognized gap 247 resulting from the downwardly folded portion 249 and the outwardly flat portion 251 at a periphery of the seal. A consumer could then be instructed to recognize this gap 247 and use it to identify the flat tab portion 251 and, thus, the tear strip 214 for ease in releasing the desired panel 214.
Turning now to
One approach of a structure to form the orifice 315 is generally shown in the cross-sectional views of
In use, a consumer releases and removes the panel 314 between the two lines of weakness 312. This approach may include the narrow tear strips, side tabs, and/or notches as with the previous approaches to aid in initiating line tearing. In doing so, the panel 314 tears the foil layer 322 and the lower heat seal layer 320 at the edges forming the cavity 327 in order to form the orifice 315. In some instances, when the orifice defining layer 232 is a polymer foam layer, such as a polyolefin foam, it may be advantageous for the orifice defining layer 323 to be about 2 mils or less, which aids in forming a clean tear of the foil layer 322 and the heat seal layer 320 at the side walls of the cavity 327. In other approaches, the seal may not include the orifice defining layer, but may have the frangible lines of weakness extend through the entire seal. After panel or tear strip 314 removal, this approach of the sealing members forms the open orifice 315 in the container for pouring, scooping, or otherwise dispensing the contents of the container.
Now that the basic structures of various sealing member with frangible lines of weakness are set forth above, further details about some of the various layers and components of the sealing members are described in more detail.
The lower heat sealable layer 20 or 320 may be any suitable hot melt adhesives or sealants for sealing or adhering to a container rim by an induction seal or other heat seal operation. For instance, the heat sealable layer may be, but is not limited to, polyesters, polyolefins, ethylene vinyl acetate, ethylene-acrylic acid copolymers, surlyn, and other suitable materials. By one approach, the heat sealable layer may be a single layer or a multi-layer structure about 0.2 to about 3 mils thick.
The membrane layer 22 or 322 in the various constructions may be a metal layer, such as, for example, aluminum foil. In one aspect, the metal layer may be about 0.3 to about 2 mils thick. The membrane layer may also be foil, tin, metalized polymers, and the like, as well as combinations thereof. The membrane layer may be any layer configured to generate induction heat.
The top layer 26 or 326 is often a puncture resistant layer or other polymer support layer and can be selected from a variety of suitable plastic materials to provide strength, support, and puncture resistance. For example, the plastic materials or film for top layer can be selected from the group consisting of polyester, preferably polyethylene terephthalate, polyamide, high density polyolefin, high density polypropylene, high density polyethylene or combinations thereof. In some approaches, the thickness of the top layer may be from about 0.5 to about 10 microns. For instance, the top layer 14 may be PET and have a thickness of about 0.5 to about 3 microns. The top layer imparts resistance to piercing or puncturing when the tear strip or panel 14 and 314 is still attached because the puncture resistant film covers the entire top surface of the seals herein. Upon tearing and release and/or removal of the strip or panel 14, then a secondary portion of the seal in the area 15 is exposed, which can have different, lower puncture properties to permit ease of piercing with a finger or other blunt object such as a straw. In some approaches, the laminate of seal portion 15 may include the foil layer 22 and the heat seal layer 20 or other easy to pierce layers such as polyolefins and the like. So constructed, the seals herein provide a dual functionality of a puncture resistant seal for initial handling and assembly, but afford a portion of the laminate to be exposed to permit ease in piercing or puncturing by a consumer in use.
The bonding layer 24 or 324 may include any polymer materials that are heat activated or heated when applied to achieve its bonding characteristics. By one approach, the heat-activated bonding layer may have a density of about 0.9 to about 1.0 g/cc and a peak melting point of about 145° F. to about 155° F. A melt index of the bonding layer 24 or 324 may be about 20 to about 30 g/10 min (ASTM D1238). Suitable examples may include ethylene vinyl acetate (EVA), polyolefins, 2-component polyurethane, ethylene acrylic acid copolymers, curable two-part urethane adhesives, epoxy adhesives, ethylene methacrylate copolymers and the like bonding materials. By one approach, the bonding layer may be about 0.5 to about 2.0 mils thick and, in other approaches, about 0.5 to about 1.5 mils thick, in yet other approaches, about 0.5 to about 1.0 mils thick; however, the thickness can vary as needed for a particular application to achieve the desired bonds and internal strength.
By one approach, the bonding layer is EVA. In general, EVA is effective for the bonding layer because of its thermal bonding characteristics, such that it readily bonds to other layers in the laminate and forms a bond thereto greater than the internal rupture strengths of the various layers. By one approach, the bonding layer may have a vinyl acetate content of about 20 to about 28 percent with the remaining monomer being ethylene in order to achieve the bond strengths. A vinyl acetate content lower than 20 percent is generally insufficient to form the robust structures described herein.
As mentioned briefly above, the seals can also include additional layers as needed for a particular application. In some approaches, the seals may also include a separate layer 23 above the membrane layer 22. This separate layer may be a polymer foam layer (such as a polyolefin or polyester foam), a non-foam heat distributing polyolefin film layer, or other polymer support layers.
By one approach, an exemplary non-foam heat distributing polyolefin film layer is a blend of polyolefin materials, such as a blend of one or more high density polyolefin components combined with one or more lower density polyolefin components. Suitable polymers include but are not limited to, polyethylene, polypropylene, ethylene-propylene copolymers, blends thereof as well as copolymers or blends with higher alpha-olefins. By one approach, a suitable non-foam heat distributing polyolefin film layer is a blend of about 50 to about 70 percent of one or more high density polyolefin materials with the remainder being one or more lower density polyolefin materials. The blend is selected to achieve effective densities to provide both heat sealing to the container as well as separation of the liner from the seal.
By one approach, effective densities of the non-foam heat distributing polyolefin layer to achieve effective heat distribution within the seal when this layer is a non-foam may be between about 0.96 g/cc to about 0.99 g/cc. Above or below this density range in a non-foamed layer, unacceptable results are obtained because the layer provides too much insulation or does not effectively distribute heat. By another approach, the non-foam heat distributing layer is a blend of about 50 to about 70 percent high density polyethylene combined with low to medium density polyethylene effective to achieve the density ranges described above.
The layers in the various constructions may be adhered to each other directly or by an intervening adhesive or tie layer that is generally not shown in any of the figures. The adhesives useful for any such optional intervening adhesive layers or tie layers include, for example, ethylene vinyl acetate (EVA), polyolefins, 2-component polyurethane, ethylene acrylic acid copolymers, curable two part urethane adhesives, epoxy adhesives, ethylene methacrylate copolymers and the like bonding materials. Other suitable intervening layer adhesives may include low density polyethylene, ethylene-acrylic acid copolymers and ethylene methacrylate copolymers. By one approach, any optional adhesive layers may be a coated polyolefin adhesive layer.
In one approach, a fracturing seam or groove forming the frangible line(s) of weakness discussed herein may be formed in a foil or film, or a laminate thereof, in an easy and reliable manner utilizing a pair of rolls where at least one roll includes a protruding rib or ridge to form an seam, groove, indentation, or elongate cavity in the film. This formed fracturing seam or frangible line of weakness may be free of any punched-through portions or perforations. The fracturing seam may be used in the sealing members herein or on packaging films. Other methods of forming the frangible lines of weakness may also be used depending on the particular application.
In one aspect, the at least one fracturing seam may be formed on films, foils, or laminates thereof by passing the material between at least one pair of rolls, wherein the rolls are arranged in a parallel, spaced-apart configuration from each other in, and wherein at least one of the rolls includes at least one rib or ridge projecting outwardly from a peripheral surface of the roll. During rotation of the rolls, the rib enters into a region or nip located between both rolls, and with the film being passed into the nip between the rolls, the rib is pressed into the surface of the film. In doing so, a groove or indented line is formed in the surface of the film in the location where the rib engages the film. As a result, the tear-resistance of film is reduced in this location as compared to the remainder of the film in view of the thickness of the film being reduced due to the formed groove. Therefore, the groove forms a fracturing seam or frangible line of weakness, along which the film can be more easily tore-open along the groove or line in a controlled manner. In the case of a film machined in this way and used as a package for goods, the package can be easily opened by controlled fracturing or tearing along the formed seam. In some approaches, the groove can be formed by deforming or engraving the film. In the case of the rolls used on the laminates herein, the fracturing seam or frangible line of weakness allows controlled release of the panel 14 or controlled release and removal of the panel by fracturing or tearing along the fracturing seam or frangible line of weakness 12.
In one approach of a method forming the seam, a distance between the pair of rolls is adjusted according to the thickness of the film. Therefore, the film fits in-between the gap created by the space between both rolls, exactly, or may be compressed slightly, if necessary. In some approaches, the distance is set such that the film is being compressed slightly in areas not corresponding to the rib. In these areas, the film will tend to un-compress to its original thickness after the passage through the pair of rolls. In the portions of the film including the formed seam or groove, the rib is being pressed into the surface of the film in a manner and distance to exceed the film's limit of flexibility (but not to penetrate all the way through the film) so that a permanent deformation assuming the shape of a groove formed in the film. This results in a reduced thickness of the film in the location contacted by the rib. A shape and depth of the rib can be adjusted or set such that, based on the material, composition and thickness of the film, a desired permanent deformation will be formed into the film forming the fracturing seam or frangible line of weakness. In doing so, seams or grooves having a constant depth, having a reliable precision, and having a regular cross-section can be formed even in thin films or laminates in the range of about 20 μm or less.
In a further approach of said methods, the pair of rolls may be driven by one or move drive motors and, in particular, driven in a counter-rotating fashion. This means the top roll of a pair is driven clockwise and the bottom roll in the pair is driven counterclockwise, for example, in order to cause a movement in a down web or running direction of the film into the nip or gap between the rolls. Therefore, a pre-defined and controllable flow of the film can be achieved between the rolls. Further, seams or grooves can be achieved that are formed very precisely due to the rolls being free, in some approaches, of any relative velocity in relation to each other and the film passing through the nip. That is, the rib is pressed into the surface of the film in a precise manner and in a direction, in some approaches, extending substantially perpendicular to the surface of the film.
In a further approach, a plurality of roll pairs may be used in a configuration where the pairs are arranged next to each other, with each pair extending along one axis, and/or arranged spaced along the down web direction of the film in succession. In doing so, the film can include more than one fracturing seam positioned in different portions of the film, which provide a film, package, or seal laminate having fracturing seams being arranged differently or to re-shape the films so that it may include a plurality of different packaging designs simultaneously. The rolls itself can be embodied to comprise very small widths, improving the precision of the distance between pairs of rolls, and wherein very small nip widths can be set highly reliable. The rolls can be held and supported on both ends of the axis of rotation incorporating a high running precision. Therefore, wide film widths can be processed with high precision as well.
In yet a further approach, the film is moved or driven via separate, transportation pairs of rolls driven in a synchronized manner with the pair of rolls containing the rib. Therefore, the film can be moved or driven by a separate, specific set of driving rolls having surfaces optimized for transportation of the film, for example, soft and elastic surfaces. Therefore, the transportation rolls having a small diameter can be used for driving, for example, and the rolls provided with the rib may have a larger diameter for forming the seams or grooves. In view of the synchronization between the rotations of the rolls in relation to the different diameters, creation of a tangential relative movement between the surface of said film and the surface of said rolls is prohibited or minimized; otherwise, such relative movement can be set to a desired amount if desired.
An apparatus for forming the fracturing seams or frangible lines of weakness includes at least a pair of rolls being spaced apart from each other in parallel arrangement with at least one of the rolls including at least one rib or ridge projecting outwardly from a surface of the roll. During rotation, the rib is pressed into a surface of the film or laminate being passed between the rolls, and in doing so, a permanent seam or groove is formed. Such seam or groove creates the fracturing seam or frangible line of weakness suitable for the sealing members herein and packaging films as needed for particular applications.
In one approach, the rib has radial extension or height, as compared to the height of the gap between the pair of rolls, that is smaller than the gap. Therefore, the rib does not cut through the film or otherwise perforate all the way through the film. In some forms, the rib has straight sides with a rectangular or trapezoid cross-section and rectangular or chamfered corners on outer edges thereof. Therefore, an optimal groove can be formed corresponding to the material of the film, wherein the groove or seam can be easily fractured or tore-open in a controlled manner along the groove or seam, but at the same time still maintains the integrity of the film because the groove does not penetrate all the way through the film. In this manner, the film can be used as a sealing member or packaging because there are no penetrations or other gaps in the film to permit air and moisture to pass through.
In other approaches, a plurality of ribs may be arranged on the surface of the roll in a spaced apart relationship and/or in parallel configurations. In doing so, a plurality of grooves or seams can be formed on the film in succession or in cooperation with each other to be arranged parallel to each other on the film. For example, this is advantageous when the film is to be separated in a plurality of sheets, originally arranged side by side, in a proceeding stage, in order to produce individual packages or sheets of materials for seal laminates. As an alternative, rolls can be used having a large diameter and with the ribs arranged close to each other for use on small or slim packages.
In yet a further approach, the rib is arranged along the longitudinal axis of the roll, or, alternatively, arranged transverse to the longitudinal axis of the roll transverse. According to the arrangement of the ribs, seams or grooves extending longitudinal or transvers in relation to the direction of movement of the film can be formed. Alternatively, the rib can be formed to be straight or curved, and can be further arranged diagonally in relation to the longitudinal axis of the roll.
The outer profile of the rib may be formed with straight outer edge and have a constant radial distance from the longitudinal axis of the roll, which may be continuously or interrupted across the longitudinal surface of the rib. In case of the outer edge of the rib being formed in a straight and continuous profile across the roll with a constant radial distance from the longitudinal axis of the roll (i.e., assuming a constant and continuous height of the rib), then a fracturing seam may be formed having a continuous depth and cross-section. Alternatively, the profile of the rib can be contoured in relation to its height, wherein it can be formed as stepped, angled, serrated, and the like. In this manner, a fracturing seam or groove having a correspondingly formed contour would be formed. This approach would still provide optimal tearing-open characteristics to the film in relation to the configuration and thickness of the material, in addition to providing appropriately large resistance against unintended fracturing required for storage and transportation. Further, it is conceivable that the rib itself may be formed to extend not in a straight manner but rather to include a curvature or any other regular or irregular extension thereof from the surface of the roll. For example, for a package intended for tearing-open of only a corner part of the package, the film may include a curved fracturing seam, which can be accomplished via a pattern of fracture seams including a curved or even rounded opening rather than a straight opening.
In a further embodiment, both rolls of said pair of rolls may include one or more ribs projecting outwardly. In such approach, the ribs can be arranged on both rolls of the pair of rolls, in order to form seams, recesses, or grooves on both surfaces of the film. Assuming a corresponding synchronization of both rolls, formation of a fracturing seam is conceivable that is formed on both sides of the foil at the same time.
More specifically,
While
By using this approach, a single layered film (or laminate) having a thickness of, but not limited, to about 25 μm to about 50 μm, for example, can be provided with a groove or seam 6 having a depths of approximately 15 μm, while avoiding or minimizing the risk of the groove 6 penetrating entirely through the film forming an through opening or other open fracture in the film. Additionally, high running velocities can be set without reductions in the quality, which benefits effective production. Afterwards, the machined film 3 can be used for producing a air-tight package 1 already applied with a fracturing seam 5, wherein the fracturing seam 5 exhibits a defined resistance against fracture. The machined film 3 may also be used within the sealing members or laminate sheets to form the sealing members described herein to form the layers with the frangible lines of weakness.
The method or rather apparatus can also be used to machine multi-layered films 3, wherein the groove depths “t” can be adjusted easily and reliably to the thickness of the topmost layer or other layers as needed of the film laminate 3. Therefore, grooves 6 can be formed reliably, for example, solely into the top layers of multi-layered laminate 3, if necessary, or may extend into one or more layers of the laminate.
Alternatively, the ribs 8 can have different shapes, profiles, lengths, and sizes in order to create fracturing seams 5 being curved, bent, or shaped otherwise, rather than fracturing seams 5 extending straight, transversely, or longitudinally to the film.
In yet another approach,
Finally,
In use, the sealing member described and shown herein can be cut into appropriately sized disks from sheets of material to form a vessel closing assembly such as generally shown by the die cut lines 40a and 40b in
It will be understood that various changes in the details, materials, and arrangements of the seal members, which have been herein described and illustrated in order to explain the nature of the seals described herein, may be made by those skilled in the art within the principle and scope of the embodied description.
Number | Date | Country | Kind |
---|---|---|---|
01268/13 | Jul 2013 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/046594 | 7/15/2014 | WO | 00 |