The present invention relates to a container insert, and more specifically to an insulated container insert, and an apparatus and a method of producing the insert.
Insulated container inserts are used to provide thermal insulation and moisture proof linings to standard shipping containers. U.S. Pat. No. 5,820,268 is exemplary of an insulating container insert of the prior art. The insert is typically produced from a planar sheet of moisture resistant insulating material. The insulating material is formed into a desired shape such as a cube or cuboid adapted to be received in a cardboard shipping container, for example. A series of folds are made and selected edges are joined with adhesive strips or by heat sealing. The finished insert is placed inside the shipping container to form a liner that provides thermal insulation and a moisture barrier for the shipping container.
Known processes for forming the insert typically include the creation of a series of folds in the planar sheet to form the insert with a closeable top. The process of folding the planar sheet of insulating material into the desired shape is typically labor intensive. The cost of producing the insert is increased due to the time and manual labor associated with the folding process.
It would be desirable to produce an insulated container insert employing an apparatus to minimize the labor required to produce the insert and to minimize the cost of the insert.
Compatible and attuned with the present invention, an insulated container insert produced with an apparatus to minimize the labor required to produce the insert and to minimize the cost of the insert, has surprisingly been discovered.
In one embodiment, a container insert comprises a deformable pouch adapted to be received in an interior of an associated container, the pouch having a closed lower end, an open upper end, and spaced apart sealed edges, the lower end including two leg portions, wherein the pouch is manipulatable to form a hollow interior space therein for receiving an object and providing a lining for the interior of the container.
In another embodiment, an apparatus for producing a container insert comprises a dispensing station for dispensing a material and folding the material upon itself along a longitudinal axis thereof to form a generally U-shaped folded material having opposing sides, a folded end, and an open end; a folding station for receiving the generally U-shaped folded material from the dispensing station and causing the folded end to be received between the opposing sides to form a generally W-shaped folded material; a sealing station including a seam forming element to form a seam extending from the closed end to the open end of the w-shaped folded material; a material advance mechanism to advance the material through the apparatus; a cutting station to cut the w-shaped configured material along the seam formed therein.
The invention also provides a method of producing a container insert comprising the steps of dispensing a material while folding the material upon itself along a longitudinal axis thereof to form a generally U-shaped folded material having opposing sides, a folded end, and an open end; causing at least a portion of the folded end of the generally U-shaped folded material to be received between the opposing sides thereof to form a generally W-shaped folded material; forming spaced apart seams in the generally W-shaped folded material, the seams extending from the closed end to the open end of the generally W-shaped folded material; and cutting the material along the seams from the closed end to the open end.
The above, as well as other advantages of the invention, will become readily apparent to those skilled in the art from the following detailed description of an embodiment of the invention when considered in the light of the accompanying photos, in which:
The following detailed description and appended drawings describe and illustrate an exemplary embodiment of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and the order of the steps is not regarded as necessary or critical.
Referring now to
As manufactured, the insert 10 has a general pouch configuration, shown in
The insert 10 can be formed having one of the sides 18, 20 longer and extending beyond the other of the sides 18, 20 at the opening 24 to form a flap 42 adjacent the opening 24. The flap 42 can be employed to cover the opening 24 during use of the insert 10. An adhesive 44 such as a double sided pressure sensitive adhesive strip or glue, for example, can be disposed on the insert 10 adjacent the opening 24 to releasably close the flap 42 and cover the opening 24. It should be understood that the adhesive 44 can be disposed on the flap 42. It should also be understood that the insert 10 can be formed without the flap 42, wherein the sides 18, 20 are substantially the same length and the adhesive 44 is disposed adjacent the opening 24.
As shown in
As shown in
The general steps for forming the insert 10 from a sheet of the material 12 are illustrated in
An apparatus 100 for producing the insert 10 in a substantially automatic and continuous process is shown in
A folding station 120, more clearly shown in
A pair of material gripping members 142, 144 and a material folding member 146 are reciprocatively mounted to the framework 126 adjacent the plates 128, 130. Actuators 148 are provided to selectively cause the gripping members 142, 144 to move toward and away from the outwardly facing surfaces 136, 138 of the respective plates 128, 130. An actuator 150 is provided to selectively cause the material folding member 146 to move between the edges 132, 134 of the plates 128, 130 and toward the dividing member 140. A pair of linear bearings 152 is provided to facilitate the movement of the material folding member 146. It should be understood that the actuators 148, 150 can be pneumatic actuators, hydraulic actuators, electromechanical actuators, or any other suitable actuator, for example. The material receiving end 122 is adapted to receive the folded material 252 from the dispensing station 110 and direct the folded material 252 to be received around at least a portion of the plates 128, 130. The sides 256, 258 of the folded material 252 are disposed between the respective material gripping members 142, 144 and the plates 128, 130 and the folded end 260 of the material 252 is disposed between the edges 132, 134 of the plates 128, 130 and the material folding member 140, as shown in
A guide 154 including a contoured end 156 is adjustably mounted to the framework 126 adjacent the material dispatching end 124 of the folding station 120. The contoured end 156 of the guide 154 is positioned at a selected location in respect of the edges 132, 134 of the plates 128, 130 and is received between the shorter legs of the W-shaped second folded configuration 264 to facilitate maintaining the second folded configuration 264 as the material 252 is dispatched from the area of the plates 128, 130. It should be understood that rollers 158 and other suitable means for conveying the material 252 through the folding station 120 can be provided at the receiving end 122, the dispatching end 124, or a location therebetween.
A sealing station 170 is provided adjacent the dispatching end 124 of the folding station 120. The sealing station 170 includes a pair of reciprocally mounted seal forming elements 172, 174. The seal forming elements 172, 174 are employed to join selected abutting surfaces of the material 252 to form substantially fluid tight seams 266. One or more actuators 176 are employed to cause the reciprocating movement of the seal forming elements 172, 174. It should be understood that the actuators 176 can be pneumatic actuators, hydraulic actuators, electromechanical actuators, or any other suitable actuator, for example. In the illustrated embodiment, the seal forming elements 172, 174 are electrically powered heating elements adapted to receive the material 252 in the second folded configuration 264 therebetween. The heating elements are in electrical communication with a source of electrical energy (not shown) and transform the electrical energy into heat energy, which is employed to join selected abutting surfaces of the material 252 to form the substantially fluid tight seams 266. It should be understood that the seal forming elements 172, 174 can be other heating element types and employ a welding process or other suitable process to form the seams 266. It should also be understood that the seems 266 can be formed by employing an adhesive such as a double sided pressure sensitive adhesive strip and a glue disposed on the material 252 prior to folding, for example.
A material advance mechanism 180 is provided adjacent the sealing station 170. The material advance mechanism 180 receives the material 252 from the sealing station 170 and advances the material 252 through the apparatus 100. The material advance mechanism 180 exerts a pulling force that is transmitted through the material 252 causing the roll 250 of the material 252 of the dispensing station 110 to rotate and dispense the material 252 therefrom. The material advance mechanism 180 can include a pair of drive rollers 182 adapted to frictionally engage the material 252 therebetween and pull the material 252 through the apparatus 100. It should be understood that any other suitable means now known or later developed may be employed for advancing the material 252 through the apparatus 100.
A cutting station 190 is provided for cutting the material 252 after being dispatched from the sealing station 170. The cutting station 190 includes a reciprocating cutting member 192 adapted to cut through the material 252 at, or adjacent, the mid-point of a width of the seams 266 formed by the sealing station 170. It should be understood that the cutting member 192 can be a rotating cutting member, a shear, a heated wire, or any other suitable cutting apparatus. It should be understood that the cutting member 192 can both cut the material 252 and form the substantially fluid tight seams 266. For example, a heated or ultrasonic cutting member can be adapted to simultaneously cut the material 252 and join abutting surfaces of the material 252 to form the substantially fluid tight seam 266. Employing a cutting member 190 that is also forms the substantially fluid tight seams 266 can eliminate the need for the sealing station 170. Further, it should be understood that the advance mechanism 180 can be incorporated into the cutting station 190.
A dispenser 196 can be coupled to the framework 126 of the folding station 120. It should be understood that the dispenser can be coupled to the folding station 110, the sealing station 170, the material advance mechanism 180, and the cutting station 190. The dispenser 196 is adapted to apply an adhesive strip 198 such as a double sided pressure sensitive adhesive strip, for example, to a surface of the material 252. The dispenser 196 disposes the adhesive strip 198 on the material 252 as the material 252 is advanced past the dispenser 196. It should be understood that the dispenser 196 can dispense other types of adhesives such as a glue or an adhesive gum, for example.
The apparatus 100 for manufacturing the insert 10 typically includes a control system 200 to facilitate the operation of the apparatus 100. A schematic drawing of the control system 200 is shown in
In use, the roll 250 of the material 252 is placed in the dispensing station 110 of the apparatus 100 as shown in
After folding the material 252 into the first folded configuration 254, the material 252 is advanced as a continuous folded sheet to the material receiving end 122 of the folding station 120. As can be more clearly seen in
The material folding member 146 is caused be removed from between the plates 128, 130 after the material 252 has been formed to the second folded configuration 264. The gripping members 142, 144 are caused to move away from the respective outwardly facing surfaces 136, 138 of the plates 128, 130 to release the material 252 from being secured against the outwardly facing surfaces 136, 138 of the plates 128, 130. The material 252 is then advanced a selected distance by the material advance mechanism 180 to bring a new section the first folded configuration 254 in position around the plates 128, 130 for folding into the second folded configuration 264.
The guide 154 is positioned adjacent the dispatching end 124 of the folding station 120 with the contoured end 156 of the guide 154 located between the folded edges forming the generally W-shape of the second folded configuration 264. The contoured end 154 of the guide 152 facilitates maintaining the material 252 in the second folded configuration 264 as it is advanced from the dispatching end 124 of the folding station 120 toward the sealing station 170.
The material 252 is advanced from the dispatching end 124 of folding station 120 in the second folded configuration 264 to the sealing station 170. The material 252 is received, between the seal forming elements 172, 174 of the sealing station 170. The actuators 176 are employed to position the seal forming elements 172, 174 adjacent the material 252 and form the substantially fluid tight seam 266 extending from the folded edges to the open end of the second folded configuration 264. The seam 266 is substantially perpendicular to the folded edges and the open end. The material 252 is advanced a selected distance to form the next seam 266 spaced apart from the previously formed seam 266. It should be understood that the seal forming elements 172, 174 join abutting surfaces of the bubble pack material 12 to form the seams 266. The abutting surfaces of the metallic foil 16 are not joined together by the seal forming elements 172, 174.
The material 252 is advanced the selected distance to place the seam 266 within the cutting station 190 and in substantial alignment with the cutting member 192 thereof. The cutting member 192 is employed to cut through the material 252 substantially at the midpoint of the width of the seam 266 along the length thereof to form one of the sealed edges 34, 36 in one insert 10 and one of the other sealed edges 34, 36 in a subsequently formed insert 10. It should be understood that the cutting member 192 can cut the material 252 forming the flap 42 of the insert 10 extending from the open end of the second configuration 264. The material 252 is again advanced the selected distance to bring the next seam 266 in substantial alignment with the cutting member 192 of the cutting station 190 to cut the material 252 along the length of the next seam 266 forming the other of the sealed edges 34, 36 of the subsequently formed insert 10 and completing the manufacture thereof. It should be understood that the distance from the seal forming elements 172, 174 of the sealing station 170 to the cutting member 192 of the cutting station 190 is substantially equivalent to the selected distance the material 252 is advanced, wherein the forming of one of the seams 266 and the cutting of the formed seam 266 can be completed substantially simultaneously. Further, it should be understood that the distance from the seal forming elements 172, 174 to the cutting member 192 can be adjusted to form the seams 266 at selected distances from each other to form different sizes of the insert 10. It should also be understood that the distance between the seams 266 can be greater than the distance between the sealing station 170 and the cutting member 192, wherein the formation of one seam 266 and the cutting of the formed seam 266 are not simultaneous and the material 252 is advanced a selected distance after the seam 266 is cut and before next seam 266 is formed.
The tape dispenser 196 can be attached to the dispensing station 110, the folding station 120, the sealing station 170, or the cutting station 190 to dispose the adhesive strip 198 on a selected surface of the material 252. Favorable results have been obtained attaching the tape dispenser 196 to the folding station 120 adjacent the dispatching end 124 to dispose the adhesive strip 198 on an outer surface of the material 252 adjacent the open end of the second folded configuration 264 to facilitate releasably securing the flap 42 of the insert 10 in a closed position.
The completed insert 10 is removed from the apparatus 100 by an operator or an automated means. The insert 10 can then be manipulated as described herein above to conform the insert 10 to the interior shape of the container 50.
The dimensions of the container 50 can be employed to calculate the desired dimensions of the insert 10 and the selected distance for advancing the material through the apparatus.
The completed insert 10 is manufactured at a minimized cost compared to the inserts of the prior art. Rather than making a multitude of precision folds in a precut blank of material, the apparatus 100 can be used to manufacture the insert 10 in a substantially continuous automated process which minimizes a time and a cost required to manufacture the insert 10.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
This application claims the benefit of U.S. provisional patent application Ser. No. 61/177,037 filed May 11, 2009, hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2084362 | Visscher et al. | Jun 1937 | A |
4560434 | Sato | Dec 1985 | A |
4679242 | Brockhaus | Jul 1987 | A |
4685276 | Kiel | Aug 1987 | A |
4704842 | Boeckmann et al. | Nov 1987 | A |
4889252 | Rockom et al. | Dec 1989 | A |
5099991 | Kitagawa et al. | Mar 1992 | A |
5163893 | Hara et al. | Nov 1992 | A |
5286248 | Dunton | Feb 1994 | A |
5314087 | Shea | May 1994 | A |
5375393 | Baker | Dec 1994 | A |
5493846 | Baker et al. | Feb 1996 | A |
5595320 | Aghassipour | Jan 1997 | A |
5638979 | Shea | Jun 1997 | A |
5669204 | Blaisdell | Sep 1997 | A |
5746690 | Humbarger et al. | May 1998 | A |
5755078 | Hurtig et al. | May 1998 | A |
5772332 | Geller | Jun 1998 | A |
5775733 | Lunt | Jul 1998 | A |
5803483 | Lunt | Sep 1998 | A |
5820268 | Becker et al. | Oct 1998 | A |
6007467 | Becker et al. | Dec 1999 | A |
6080096 | Becker et al. | Jun 2000 | A |
6223903 | Mansouri | May 2001 | B1 |
6231237 | Geller | May 2001 | B1 |
6254523 | Yamamoto et al. | Jul 2001 | B1 |
6443309 | Becker | Sep 2002 | B1 |
6513703 | Becker | Feb 2003 | B2 |
6644193 | Elsner | Nov 2003 | B2 |
6676011 | Luu et al. | Jan 2004 | B2 |
6718725 | Farwig et al. | Apr 2004 | B2 |
6913389 | Kannankeril et al. | Jul 2005 | B2 |
7021524 | Becker et al. | Apr 2006 | B1 |
7140773 | Becker et al. | Nov 2006 | B2 |
7260922 | Harding et al. | Aug 2007 | B2 |
7318798 | Yamamoto et al. | Jan 2008 | B2 |
7331917 | Totani | Feb 2008 | B2 |
7416091 | Yong | Aug 2008 | B2 |
Entry |
---|
Publication—Pregis, ASTRO-FOAM polyethylene sheet foam by Pregis; Information Page (revised Jun. 2007) Rhino Bags. |
Number | Date | Country | |
---|---|---|---|
20100284634 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61177037 | May 2009 | US |