The present disclosure relates to an anti-splash device for a container or a vessel having and an anti-splash device.
This section provides background information related to the present disclosure, which is not necessarily prior art. The following description is not an admission that any of the information provided herein is prior art or that any publication specifically or implicitly referenced is prior art.
The olfactory perception of consumers is an important factor to consider when developing a certain beverage. Oral taste relies heavily on the sense of smell. Through the sense of smell, consumers can enjoy a beverage. A pleasant aroma can induce consumers into trying the beverage and the overall experience can be enhanced by consuming the beverage with the combination of a pleasant smell and taste. Unfortunately, many consumers on the go are deprived of this olfactory experience because containers have lids that fail to provide a means to trigger the olfactory experience with the aroma of the beverage.
WO 2011/082333 to Sprunger discloses a beverage lid that has a pod (e.g., compartment) filled with aromatic material (e.g., coffee grind). The lid allows vapor rising from a hot beverage to pass through the aroma pod and to the user's nose. Unfortunately, this approach can be problematic if the aromatic material is accidentally wetted while filling the beverage container or while drinking from the beverage container. In addition, the lid is relatively large and expensive since it requires a pod with an aromatic material.
A similar approach is described in WO 2009/126555 to Kaufman, which discloses a beverage lid that has a compartment for holding a sample of fresh beverage material. The compartment is placed near the user's nose, allowing the user to smell the beverage material when drinking from the lid. While the Kaufman lid can provide a pleasant aroma of fresh material, this approach is troublesome for those consumers that desire repeated use.
In another approach, GB 2473041 and GB 2473042 both to Brown disclose a cup lid having a curved rim surface that is higher at the drinking aperture. The beverage flows through a liquid guide trough, which exposes the liquid to the air adjacent to the user's nose. Unfortunately, a user may run the risk of burning his/her upper lip because the lid's curved rim surface places the user's upper lip into the flow of the beverage in the guide trough. Brown also fails to provide a controlled beverage flow rate and a comfortable/secure feeling for drinking hot beverages. Furthermore, these publications fail to contain and redirect the aroma to a concentrated point near the user's nose.
U.S. Patent Application Publication No. 2011/0114655 to Bailey provides a cup lid that has two apertures, one of which is positioned on a ridge that bisects the lid. This approach increases the risk of spilling via the additional aperture and fails to allow the beverage to aerate outside of the container as it flows to the user's mouth.
In U.S. Pat. No. 8,881,938 to Brannock (“Brannock”) the primary problem that Brannock satisfies is spillage prevention, e.g., enhancing an olfactory experience is done without affecting the desire to avoid spillage. Brannock neglects the need to promote a concentrated collection of vapor from the coffee and direction of that vapor to the nose to enhance the drinking experience. Brannock prioritizes anti-spillage over vapor concentration.
Thus, there is still a need for improved lids that enhance the olfactory experience of drinking an aromatic beverage and that provide better comfort and protection when drinking hot beverages.
This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.
Some embodiments of the inventive subject matter may be directed toward a lid for a container. The lid may include a first portion and a second portion. The first portion may include a proximal surface having a first-dimension value and a first rim coupled to the proximal surface and having a second-dimension value. The first-dimension value may be larger than the second-dimension value. The second portion may be configured to receive the first portion in a nested relationship and may include a collar having an outer dimension value substantially similar to the first dimension value and an inner dimension value substantially similar to the second dimension value and a second rim connected to the collar and having an outer dimension value substantially similar to the second dimension value.
Embodiments may include a baffle defining a first through-hole at a central region of the baffle and at least partially in contact with the collar at an edge of the baffle and at least partially surrounded by the collar. The baffle may have a partial toroid cross-section and define a second through-hole at the edge of the baffle. A flap may be connected to the baffle at the second through-hole and may be configured to at least partially impede fluid flow through the second through-hole. The flap may be connected at a connection point to the baffle at a first angle defined by the connection point as a first vertex, the edge of the baffle, and the flap. The first angle may be smaller than a second angle that is defined by the connection point as a second vertex, the edge of the baffle, and a proximal rim of the second portion.
Embodiments may include a groove and ribs defined by the proximal surface of the first portion. The ribs may extend into the groove from the proximal surface. The defined groove may be configured to matingly receive a proximal rim of the second portion and clip the first portion to the proximal rim of the second portion.
Further embodiments may be directed toward a drinking vessel including a tumbler, a first portion and a second portion. The tumbler may include an inner surface dimension value. The first portion may include a proximal surface having a first-dimension value and a first rim coupled to the proximal surface and having a second-dimension value. The first-dimension value may be larger than the second-dimension value. The second portion may be configured to receive the first portion in a nested relationship and may include a collar having an outer dimension value substantially similar to the first dimension value and an inner dimension value substantially similar to the second dimension value. A second rim may be connected to the collar and may have an outer dimension value substantially similar to the second-dimension value and the inner surface dimension value.
The drinking vessel may include a baffle at least partially in contact with the collar at an edge of the baffle and at least partially surrounded by the collar. The baffle may define a first through-hole at a central region of the baffle and a second through-hole at the edge of the baffle. The baffle may have a partial toroid cross-section. A flap may be connected to the baffle at the second through-hole and may be configured to at least partially impede fluid flow through the second through-hole.
Yet further embodiments may be directed toward a lid for a container including a substrate having a first surface and a second surface, a rim coupled to the first surface of the substrate and a groove defined by the substrate. The first surface may oppose the second surface. The defined groove may be arcuately defined in the second surface of the substrate and may be configured to receive a rim of a drinking vessel. A spring for biasing the defined groove toward or away from a closed position may be included in the lid.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible embodiments and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer, or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The following embodiments are examples of the inventive subject matter. Any element not suggested by, not disclosed and/or not recited in the following embodiments or appended claims is not essential to the inventive subject matter. Any element recited in the following embodiments and appended claims is not, by virtue of its inclusion, essential. Any element of the present disclosure may be replaced with any other equivalent element. For example, where the term “may” is used, a specific element may or may not be included in the inventive subject matter. Where elements are not referred to as optional, i.e., by using the term “may,” that element is not necessarily essential to practicing the claimed invention.
The second portion 104 may include a collar 110. The second portion 104 is illustrated as having a substantially circular cross-section; however, the second portion 104 may have a cross-section that is circular, triangular, square, polygonal, or irregular. The second portion 104 is illustrated as having a cross-section that corresponds with, i.e., substantially identical to, the cross-section of the first portion 102. However, it is not necessary, that the second portion 104 have a substantially identical cross-section to the cross-section of the first portion 102; the second portion 104 may have a cross-section substantially different and independent from the cross-section of the first portion 102.
As illustrated in
A clip 210 may extend from the inner surface 112 or from the first rim 202. The clip may have an L-shaped cross-section and may include a first portion 212 and a second portion 214. The first section 212 may be a substantially planar surface. The second portion 214 may be a substantially planar surface that is substantially perpendicular to the first portion 212. The second portion 214 may include multiple prongs. For example,
A condensation barrier 216 may be included on an interior collar surface 218 of the collar 110. The condensation barrier 216 may be substantially diametrically opposite a position of the clip 210. The condensation barrier 216 may be a planar member or a ramp-like member. The condensation barrier 216 may form a condensation cavity 220 along with the inner collar surface 218.
As illustrated in
The baffle 304 may be connected to the collar at an edge 312 of the baffle 304 to the collar 110. The baffle 304 may define a vent 314, i.e., a first through-hole. In some embodiments, the first through-hole 314 may be at a central region of the baffle 304. In other embodiments, the first through-hole may be offset from the central region of the baffle 304.
The baffle 304 may define a second through-hole 316. The second through-hole 316 may be at or near the edge 312 of the baffle 304. A flap 318 may be attached to the baffle 304 at or near an edge of the defined second through-hole 316. The second through-hole 316 may be provided to allow a person to drink the contents of the container.
A second angle β may be formed by the first line drawn from an inner edge 330 of the baffle 304 that defines the through-hole 314 to the edge 312 of the baffle 304 and a third line from the inner edge 330 of the baffle 304 to a proximal edge 332 of the collar 110. The inner edge 330 may be the vertex of the second angle β. The first angle α may be smaller than the second angle β.
The first portion 102 may be attached to the second portion 104 by the clip 210. For example, the prongs 214a and 214b may engage the proximal edge 332 of the collar 110 to lock the first portion 102 to the second portion 104. The locked first and second portions 102 and 104 may be in a substantially perpendicular configuration based on first and third dimension values, d1 and d3, relative to each other. When locked, the locked first and second portions 102 and 104 may be in tight enough engagement to prevent substantial displacement between the portions 102 and 104 relative to each other. The locked first and second portions, 102 and 104, may allow displacement of the lid 100 in one or two directions, e.g., axial and longitudinal directions, axial and rotational directions, longitudinal and tilt directions, etc. In some embodiments, the tab 210 is at a same region as the tab 106, which provides easier placement of the first portion 102 on the second portion 104.
In other embodiments, the ridge 404 may be a protrusion to engage an O-ring seal. For example, the ridge may be coupled to a groove 408 defined by an inner surface 410 of the vessel 402 at or near the proximal rim 406 in which the O-rings may engage the inner surface 410 of the vessel 402. The groove 408 may adjoin a side of the ridge 404 nearest the distal end (not shown) of the vessel 402 opposite the proximal rim 406 in a sine wave configuration with the ridge 406.
Either of the first portion 102 or the second portion 104 may engage the proximal rim 406. For example, the proximal rim 406 may have a dimension, e.g., a diameter, equal to d1 and d3, which are substantially equal to each other. The first portion 102 may therefore directly engage the proximal rim 406 or the second portion 104 may directly engage the proximal rim 406.
Removal of the first portion 102 from the second portion 104 may require less force than removal of the second portion 104 from vessel 402. For example, the proximal rim 406 and/or groove 408 may engage the second portion 104 more tightly than the second portion 104 engages the first portion 102.
With further reference to
In some embodiments, the baffle 304 may be a partial toroid. For example, in a toroid having a circular cross-section, the cross-section may be a half or partial circle that is revolved about a central axis. Thus, in the present example embodiment, the baffle 304 may be a concavity with a central vent, e.g., a doughnut hole, in a middle region of the toroid. It is not required, however, that the concavity be circular but may instead be rectilinear or randomly arcuate.
The baffle 304 may prevent liquid from escaping the vessel 402 while the first through-hole allows vapor to escape the vessel 402. For example, liquid may be more likely to be displaced along the sides of a vessel rather than directly up through the center of a vessel. With the exception of the second through-hole 316, the baffle 304 may be completely attached to the inner wall of a vessel, collar, or lid to prevent fluid and vapor from escaping the vessel. Therefore, as liquid within the container is vertically displaced, the baffle 304 impedes fluid flow along the sides of the vessel.
In a direction of the second through-hole 316, the baffle 304 may be sloped toward a bottom of the vessel from, for example, the proximal edge 332 (if the baffle 304 is in a collar) or, for example, from a proximal rim of the vessel. Thus, for example, fluid that is displaced along the interior wall of a vessel and splashes onto the baffle 304 may be redirected back into the vessel. Vapor from fluid within the vessel may nonetheless escape through the first through-hole 314.
In some embodiments, a third portion (not shown) such as a lid, cap, plug, tab, or cover, substantially equivalent to the size of the first through-hole 314, may be placed directly over or under the first through-hole 314. Thus, additional protection from splashes through the first through-hole 314 may be provided by the third portion.
The projection 504 may be any of a mound, a cone, a pyramid, an elongate body, etc. The projection 504 may project from the inner surface 502 of the first portion 500 toward a distal end of the vessel. In some embodiments, a plurality of projections may project from the inner surface 502 toward the distal end of the vessel. The plurality of projections may be equally spaced apart, or they may be randomly spaced apart and they may all be similarly shaped or randomly shaped.
The projection 504 may help to prevent condensation from collecting on the inner surface 502 of the first portion 500. For example, condensation from hot beverages within the vessel may gather on the projection and release onto the baffle or back into the vessel. Thus, if the first portion 500 is locked onto the second portion 104, condensation on the inner surface 502 is reduced and/or altogether eliminated.
For any compensation that collects on the inner surface 502, it may collect in the condensation cavity 520 when the first portion 500 is attached to a vessel or a second portion by the clip 210. Condensation may be prevented from escaping the condensation cavity 520 by the condensation barrier 516. The condensation barrier may include a sloped surface 522 that allows condensation to be expelled from the condensation cavity 520 when the first portion 500 is attached to a vessel or a second portion as a lid.
A compartment 604 may be defined by a proximal surface 608 and an inner surface 602. The compartment 604 may help to reduce condensation on the inner surface 602. For example, the presence of a lid having a temperature lower than a temperature within the vessel promotes vapor condensation on an interior surface of the lid. The compartment 604 may help maintain the inner surface 602 of the lid at temperature higher than a temperature of cooler air outside of the vessel. For example, the inner surface 602 may be substantially warmer than the proximal surface 608 due to the presence of the compartment 604.
For any compensation that collects on the inner surface 602, it may collect in the condensation cavity 620 when the first portion 600 is attached to a vessel or a second portion by the clip 210. Condensation may be prevented from escaping the condensation cavity 620 by the condensation barrier 616. The condensation barrier may include a sloped surface 622 that allows condensation to be expelled from the condensation cavity 620 when the first portion 600 is attached to a vessel or a second portion as a lid.
Some embodiments may include a combination of one or more projections 606 and one or more compartments 604 to further reduce condensation from the inner layer 602. The compartment 604 may be filled with any insulating means with low heat transfer capability such as air, a vacuum, cork, ceramic, etc.
In some embodiments, as shown in
As illustrated in
Clipping action may be promoted by a spring (not shown), e.g., helical spring, a leaf spring, a torsion spring, etc. For example, the prong section 706 may be attached to the first portion 700 via a hinge (not shown) and urged toward the body via the spring, which is connected to the body section 704 and/or the prong section 706.
The lid recess 702 may be configured to immovably attach the first portion 700 to the vessel 730 or the second section 104. For example, in some embodiments, the lid recess 702 may have an average radius of curvature that is smaller or larger than the average radius of curvature of a proximate rim 732 of the vessel 730 or of the second portion 104. In alternative embodiments, the lid recess 702 may include at least one rib 710, projecting into the lid recess 702 from the body section 704 or from the prong section 706, that directly contacts the vessel 730 or second portion 104 when the first portion 700 is in contact with the vessel 730 or second portion 104. The rib 710 may have a cross-section that is cylindrical, rectangular, triangular, hexagonal, polygonal, etc. In alternative embodiments, the rib 710 may have a substantially constant cross-section along an entire length of the rib 710. In yet further alternative embodiments, the rib 710 may have a varying cross-section along the entire length of the rib 710. In other embodiments, the clamping/clipping function performed by the rib 710 may be performed by a semi-spherical projection or by a spring-loaded member.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
The application claims the benefit of International Application No. PCT/US2021/024727 filed Mar. 29, 2021, which claims the benefit of provisional U.S. Patent Application No. 63/021,657 filed May 7, 2020, the contents of each of which are hereby incorporated in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/024727 | 3/29/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/225718 | 11/11/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3800999 | Serritella | Apr 1974 | A |
4130215 | Corey | Dec 1978 | A |
4619372 | McFarland | Oct 1986 | A |
5531347 | Goulding | Jul 1996 | A |
6296141 | Lukacevic | Oct 2001 | B1 |
7575126 | Kemper | Aug 2009 | B2 |
7959029 | Whitaker | Jun 2011 | B2 |
9078535 | Buck | Jul 2015 | B1 |
9241588 | Dunn | Jan 2016 | B2 |
11241110 | Cudworth | Feb 2022 | B2 |
20030102312 | Horner | Jun 2003 | A1 |
20060096983 | Patterson | May 2006 | A1 |
20070210093 | Pinelli | Sep 2007 | A1 |
20090283526 | Pierce | Nov 2009 | A1 |
20100308046 | Serra | Dec 2010 | A1 |
20110049171 | Morgan | Mar 2011 | A1 |
20110084070 | Martheenal | Apr 2011 | A1 |
20120312816 | Barreto | Dec 2012 | A1 |
20130056467 | Shepard | Mar 2013 | A1 |
20140001189 | Savenok | Jan 2014 | A1 |
20140319138 | Polt | Oct 2014 | A1 |
20160000245 | Sims | Jan 2016 | A1 |
20160272384 | Lee | Sep 2016 | A1 |
20170273483 | McArthur | Sep 2017 | A1 |
20180050845 | Chin | Feb 2018 | A1 |
20180194524 | Chalermwinsuekun | Jul 2018 | A1 |
20190261795 | Savenok | Aug 2019 | A1 |
20190375559 | Spivey | Dec 2019 | A1 |
20200359816 | Renz | Nov 2020 | A1 |
20200383505 | Rees | Dec 2020 | A1 |
20220024655 | Humphrey | Jan 2022 | A1 |
20220218132 | Bullock | Jul 2022 | A1 |
20220411161 | Morris, III | Dec 2022 | A1 |
20230012382 | Vang | Jan 2023 | A1 |
20230255377 | Roaks | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
WO 2019118004 | Jun 2019 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jun. 23, 2021, issued in International Application No. PCT/US2021/024727 filed Mar. 29, 2021 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20230050778 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63021657 | May 2020 | US |