The present disclosure relates to plastic bottles. More specifically, the present disclosure is directed to embodiments of a preform configured to be blow-molded into a plastic bottle, the preforms facilitating improved top-load performance of the blown plastic bottles.
Plastic containers or bottles are used in the packaging of beverages. Plastic bottles are generally made by a process that includes injection molding a plastic preform, followed by blow-molding the plastic preform into the bottle. The preforms and bottles are generally formed of a plastic polymer, such as polyethylene terephthalate (PET).
In one embodiment, a preform configured to be blow-molded into a plastic bottle includes a neck section defining an opening, the neck section including a threaded portion configured to engage a closure, and a neck ring, a transition section having a first end positioned adjacent to the neck ring and a second end opposite the first end, a cylindrical body section extending from the second end of the transition section to a base, and a longitudinal axis extending from the opening through the base. The neck section, transition section, and the body section define a hollow channel positioned between the opening and the base. The transition section defines a tapered sidewall relative to the longitudinal axis, the tapered sidewall decreases a cross-sectional diameter of the hollow channel. The tapered sidewall of the transition section contains 20% to 30% of a total weight of the preform.
In another embodiment, a preform for producing a plastic bottle includes a tubular body defining a hollow interior, the body defining the following components in sequence: a finish section defining an opening and a threaded portion, a neck ring, a transition section having a first end positioned adjacent to the neck ring and a second end opposite the first end, and a cylindrical body section extending from the second end of the transition section to a base, the base sealing the body at an end opposite the opening. A longitudinal axis extends from the opening through the base. The transition section defines a tapered sidewall relative to the longitudinal axis, the tapered sidewall decreases a cross-sectional diameter of the hollow interior. The tapered sidewall of the transition section contains more than 20% of a total weight of the preform.
Other aspects of the disclosure will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
The present disclosure is directed to an embodiment of a preform 200 configured to be blow-molded into a bottle 100. The preform 200 includes substantially more material (or plastic material) in a transition section 208 of the preform, which is positioned between a neck section 204/finish section 204 and a body section 212 of the preform 200. The transition section 208 includes 20% to 40% of the total material (by weight) (i.e., an amount of plastic) of the entire preform 200. Known preforms generally have approximately 10% to 15% of the total material (by weight). By distributing more material into the transition section 208 of the preform 200, the blow-molded bottle 100 has greater top load performance. In response to blow-molding, the transition section 208 forms a bell 116 of the bottle 100. The additional material positioned in the transition section 208 of the preform 200 provides additional material in the bell 116 of the bottle 100 after blow-molding, resulting in improved strength and top load performance of the bottle 100.
With reference now to
The neck section 204 is defined as the region between the opening 144 and a bottom (or base side) of the neck ring 136. The opening 144 is formed of a generally cylindrical portion of the neck section 204. The transition section 208 is defined as the region from the bottom (or base side) of the neck ring 136 to the body section 212. A sidewall 216 of the preform increases in thickness along the transition section 208. A cross-sectional diameter of the preform 200 also decreases in width along the transition section 208. The body section 212 is defined as the region from the transition section 208 to a base 220 (or a bottom 220 or an end cap 220) of the preform 200. The base 220 seals a bottom end of the tubular hollow interior. The sidewall 216 of the preform in the body section 212 maintains a constant thickness until reaching the base 220. The thickness of a preform wall 224 at the base is slightly narrower (or slightly less) than a thickness of the sidewall 216. It should be appreciated that the transition section 208 and the body section 212 can together be referred to as a preform body. During blow-molding, the neck section 204 does not change in shape. Stated another way, the neck section 204 is the same size in both the preform 200 and the finished bottle 100 (i.e., after blow-molding). The preform body is configured to be heated, and after heating, the preform body is configured to expand in response to blow-molding to form the bottle with the neck section 204.
With specific reference to
With reference now to
With specific reference to
The exterior surface 234 is also sloped (or tapered) inward towards the longitudinal axis A1. The exterior surface 234 can be oriented to taper at a first angle β (or an exterior angle β or a first exterior angle β1). The first angle β1 can extend between the exterior surface 234 and the central longitudinal axis A1. It should be appreciated that the angle of the taper of the exterior surface 234 can be adjusted or engineered to achieve certain performance characteristics in the blow-molded bottle. The angle of the taper of the exterior surface 234 can also be adjusted to achieve different thicknesses to material in the sidewall 216 of the transition section 208. In some embodiments, the exterior surface 234 can have a uniform taper that extends between the first and second ends 228, 232 of the transition section 208. With this geometry, the taper of the exterior surface 234 can maintain a uniform first angle β1 along the exterior surface 234 between the first and second ends 228, 232. In other examples of embodiments, the exterior surface 234 can include a variable taper. Stated another way, the exterior surface 234 can be separated into a plurality of surface portions, with each surface portion defining a different angle of taper of the exterior surface 234. For example, the exterior surface 234 can be divided into a first exterior surface portion oriented to taper at the first angle β1, defined as the angle between the first surface portion of the exterior surface 234 and the central longitudinal axis A1. A second surface portion can be oriented to taper at a second angle β2 (not illustrated) defined as the angle between a second exterior surface portion of the exterior surface 234 and the central longitudinal axis A1. In embodiments with a plurality of tapers, the second angle β2 is greater than the first angle β1, as this facilitates the greater thickness of material at the second thickness T2 at the second end 232 of the transition section 208. In other examples of embodiments, the exterior surface 234 of the transition section 208 can have three or more different tapers, with each consecutive portion of the exterior surface 234 from the first end 228 to the second end 232 increasing in angle (defined between the central longitudinal axis A1 and the associated portion of the exterior surface 234) to facilitate additional material (or a greater thickness) in the sidewall 216 associated with the portion of the exterior surface 234.
A cross-sectional width (or cross-sectional diameter) of the hollow interior of the preform 200 in the transition section 208 decreases from the first end 228 to the second end 232. With reference back to
The body section 212 has a generally cylindrical cross-sectional shape from the transition section 208 to the base 220. As shown in
The wall 224 at the base 220 decreases in thickness relative to the relative to the sidewall 216 of the body section 212. The wall 224 of the base 220 has a third thickness T3. The third thickness T3 is less than the second thickness T2. It should be appreciated that the body section 212 of the preform 200, and more specifically the sidewall 216 of the body section 212, defines the sidewall 108 of the bottle 100. In addition, it should be appreciated that the base 220 of the preform 200 defines the base 104 of the blown bottle 100. In some examples of embodiments, the base 220 can be conical, frustoconical, or hemispherical in shape. In yet other examples of embodiments, a terminus of the base 220 can be flattened or rounded.
In addition to the additional material leading to a thicker sidewall 216 in the transition section 208, the weight of the transition section 208 is greater than in known preforms. In known preforms, the transition section generally accounted for approximately 10% to 15% of the total weight of the preform. In the preform 200, the transition section 208 accounts for 20% or more of the total weight of the preform. Stated another way, the transition section 208 of the preform 200 accounts for approximately 20% to approximately 30% of the total weight of the preform 200. It should be appreciated that the weight is provided in the sidewall 216 of the transition section 208.
The preform 200 and associated geometry can be adapted for different preform sizes and weights. The preform size and weight can be selected based on the desired size and volume of the blow-molded bottle 100. The preform 200 can have a total preform weight of approximately 17.0 grams (g) to approximately 35.0 grams (g). These preform sizes are configured to be blow-molded into a bottle 100 that has a volume of approximately 12.0 ounces (oz.) to approximately 28.0 ounces (oz.).
In one example of an embodiment of the preform 200, the preform 200 can have a total weight of 17.42 g. In this embodiment, the preform 200 can have a total height (or a total length) of 73.0 millimeters (mm). The neck section 204 can have a first height H1 of 14.90 mm. The transition section 208 can have a second height H2 of 15.07 mm. The body section 212 has a third height H3 of 43.03 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 of 1.29 mm and a second thickness T2 at the second end 232 of 3.85 mm. The sidewall 216 of the body section 212 has the second thickness T2 of 3.85 mm. The wall 224 of the base 220 has a third thickness T3 of 2.68 mm. The interior surface 233 of the transition section 208 has a first interior angle Θ1 of 26.067°. The exterior surface 234 of the transition section 208 has a first exterior angle β1 of 16.60°. The transition section 208 has a first cross-sectional width W1 of 26.91 mm, and a second cross-sectional width W2 of 16.38 mm. The body section 212 has the second cross-sectional width W2 of 16.38 mm. The preform has a weight distribution of the neck section 204 weighing 3.13 grams (g), the transition section 208 weighing 3.95 g, and the body section 212 weighing 10.34 g. As a percentage of weight, the neck section 204 is 18.00% of the total weight of the preform 200, the transition section 208 is 22.70% of the total weight of the preform 200, and the body section 212 is 59.30% of the total weight of the preform 200.
In another example of an embodiment of the preform 200, the preform 200 can have a total weight of 20.27 g. In this embodiment, the preform 200 can have a total height (or a total length) of 74.0 millimeters (mm). The neck section 204 can have a first height H1 of 14.90 mm. The transition section 208 can have a second height H2 of 15.33 mm. The body section 212 has a third height H3 of 43.77 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 of 1.75 mm and a second thickness T2 at the second end 232 of 3.56 mm. The sidewall 216 of the body section 212 has the second thickness T2 of 3.56 mm. The wall 224 of the base 220 has a third thickness T3 of 2.85 mm. The first surface portion 233a of the interior surface 233 of the transition section 208 has a first interior angle Θ1 of 11.8667°, and the second surface portion 233b of the interior surface 233 of the transition section 208 has a second interior angle η2 of 18.483°. The exterior surface 234 of the transition section 208 has a first exterior angle β1 of 13.31667°. The transition section 208 has a first cross-sectional width W1 of 26.85 mm, and a second cross-sectional width W2 of 17.16 mm. The body section 212 has the second cross-sectional width W2 of 17.16 mm. The preform has a weight distribution of the neck section 204 weighing 3.21 grams (g), the transition section 208 weighing 5.07 g, and the body section 212 weighing 11.99 g. As a percentage of weight, the neck section 204 is 15.8% of the total weight of the preform 200, the transition section 208 is 25.0% of the total weight of the preform 200, and the body section 212 is 59.2% of the total weight of the preform 200.
In another example of an embodiment of the preform 200, the preform 200 can have a total weight of 21.91 g. In this embodiment, the preform 200 can have a total height (or a total length) of 79.9 millimeters (mm). The neck section 204 can have a first height H1 of 15.70 mm. The transition section 208 can have a second height H2 of 17.78 mm. The body section 212 has a third height H3 of 46.42 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 of 1.29 mm and a second thickness T2 at the second end 232 of 3.54 mm. The sidewall 216 of the body section 212 has the second thickness T2 of 3.54 mm. The wall 224 of the base 220 has a third thickness T3 of 2.84 mm. The interior surface 233 of the transition section 208 has a first interior angle Θ1 of 33.333°. The exterior surface 234 of the transition section 208 has a first exterior angle β1 of 25.5667°. The transition section 208 has a first cross-sectional width W1 of 33.30 mm, and a second cross-sectional width W2 of 17.22 mm. The body section 212 has the second cross-sectional width W2 of 17.22 mm. The preform has a weight distribution of the neck section 204 weighing 4.07 grams (g), the transition section 208 weighing 6.08 g, and the body section 212 weighing 11.76 g. As a percentage of weight, the neck section 204 is 18.60% of the total weight of the preform 200, the transition section 208 is 27.70% of the total weight of the preform 200, and the body section 212 is 53.70% of the total weight of the preform 200.
In another example of an embodiment of the preform 200, the preform 200 can have a total weight of 24.99 g. In this embodiment, the preform 200 can have a total height (or a total length) of 85.0 millimeters (mm). The neck section 204 can have a first height H1 of 15.70 mm. The transition section 208 can have a second height H2 of 19.19 mm. The body section 212 has a third height H3 of 50.11 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 of 1.34 mm and a second thickness T2 at the second end 232 of 3.64 mm. The sidewall 216 of the body section 212 has the second thickness T2 of 3.64 mm. The wall 224 of the base 220 has a third thickness T3 of 2.91 mm. The interior surface 233 of the transition section 208 has a first interior angle Θ1 of 28.41667°. The exterior surface 234 of the transition section 208 has a first exterior angle β1 of 20.45°. The transition section 208 has a first cross-sectional width W1 of 33.30 mm, and a second cross-sectional width W2 of 18.55 mm. The body section 212 has the second cross-sectional width W2 of 18.55 mm. The preform has a weight distribution of the neck section 204 weighing 4.07 grams (g), the transition section 208 weighing 6.45 g, and the body section 212 weighing 14.47 g. As a percentage of weight, the neck section 204 is 16.3% of the total weight of the preform 200, the transition section 208 is 25.80% of the total weight of the preform 200, and the body section 212 is 57.90% of the total weight of the preform 200.
In another example of an embodiment of the preform 200, the preform 200 can have a total weight of 29.01 g. In this embodiment, the preform 200 can have a total height (or a total length) of 95.0 millimeters (mm). The neck section 204 can have a first height H1 of 15.70 mm. The transition section 208 can have a second height H2 of 21.05 mm. The body section 212 has a third height H3 of 58.25 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 of 1.34 mm and a second thickness T2 at the second end 232 of 3.76 mm. The sidewall 216 of the body section 212 has the second thickness T2 of 3.76 mm. The wall 224 of the base 220 has a third thickness T3 of 3.01 mm. The interior surface 233 of the transition section 208 has a first interior angle Θ1 of 28.7333°. The exterior surface 234 of the transition section 208 has a first exterior angle β1 of 21.0833°. The transition section 208 has a first cross-sectional width W1 of 33.29 mm, and a second cross-sectional width W2 of 17.98 mm. The body section 212 has the second cross-sectional width W2 of 17.98 mm. The preform has a weight distribution of the neck section 204 weighing 4.07 grams (g), the transition section 208 weighing 7.29 g, and the body section 212 weighing 17.65 g. As a percentage of weight, the neck section 204 is 14.00% of the total weight of the preform 200, the transition section 208 is 25.10% of the total weight of the preform 200, and the body section 212 is 60.90% of the total weight of the preform 200.
In another example of an embodiment of the preform 200, the preform 200 can have a total weight of 35.05 g. In this embodiment, the preform 200 can have a total height (or a total length) of 96.0 millimeters (mm). The neck section 204 can have a first height H1 of 15.70 mm. The transition section 208 can have a second height H2 of 22.92 mm. The body section 212 has a third height H3 of 57.38 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 of 1.34 mm and a second thickness T2 at the second end 232 of 3.74 mm. The sidewall 216 of the body section 212 has the second thickness T2 of 3.74 mm. The wall 224 of the base 220 has a third thickness T3 of 2.99 mm. The first surface portion 233a of the interior surface 233 of the transition section 208 has a first interior angle Θ1 of 18.35°, and the second surface portion 233b of the interior surface 233 of the transition section 208 has a second interior angle Θ2 of 12.60°. The exterior surface 234 of the transition section 208 has a first exterior angle β1 of 9.20°. The transition section 208 has a first cross-sectional width W1 of 33.32 mm, and a second cross-sectional width W2 of 22.89 mm. The body section 212 has the second cross-sectional width W2 of 22.89 mm. The preform has a weight distribution of the neck section 204 weighing 4.07 grams (g), the transition section 208 weighing 9.16 g, and the body section 212 weighing 21.82 g. As a percentage of weight, the neck section 204 is 11.60% of the total weight of the preform 200, the transition section 208 is 26.10% of the total weight of the preform 200, and the body section 212 is 62.30% of the total weight of the preform 200.
While the examples above provide examples of embodiments of certain dimensions of the preform 200, the preform 200 can have a range of certain weights and/or dimensions. For example, the preform 200 can have a preform weight (or total weight) in the range of approximately 17.0 g to approximately 35.05 g. The bottles blow-molded from these preforms 200 can have a volume in a range of approximately 12.0 oz. to approximately 28.0 oz. in size. The preform 200 can have a total height (or a total length) in a range of approximately 70.00 mm to approximately 99.0 mm, and more specifically approximately 71.50 mm to approximately 97.50 mm, and more specifically approximately 73.00 mm to approximately 96.00 mm. The neck section 204 can have a height H1 in a range of approximately 13.50 mm to approximately 17.50 mm, and more specifically of approximately 14.00 mm to approximately 16.50 mm, and more specifically of approximately 14.90 mm to approximately 15.70 mm. The transition section 208 can have a second height H2 in a range of approximately 14.00 mm to approximately 24.00 mm, and more specifically of approximately 15.00 mm to approximately 23.00 mm, and more specifically of approximately 15.07 mm to approximately 22.92 mm. The body section 212 has a third height H3 in a range of approximately 40.00 mm to approximately 62.00 mm, and more specifically of approximately 42.00 mm to approximately 59.00 mm, and more specifically of approximately 43.03 mm to approximately 58.25 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a first thickness T1 at the first end 228 in a range of approximately 1.20 mm to approximately 1.90 mm, and more specifically of approximately 1.25 mm to approximately 1.85 mm, and more specifically of approximately 1.25 mm to approximately 1.80 mm, and more specifically of approximately 1.29 mm to approximately 1.75 mm. The sidewall 216 of the transition section 208 of the preform 200 can have a second thickness T2 at the second end 232 in a range of approximately 3.30 mm to approximately 4.00 mm, and more specifically of approximately 3.30 mm to approximately 3.95 mm, and more specifically of approximately 3.35 mm to approximately 3.95 mm, and more specifically of approximately 3.35 mm to approximately 3.90 mm, and more specifically of approximately 3.40 mm to approximately 3.90 mm, and more specifically of approximately 3.45 mm to approximately 3.90 mm, and more specifically of approximately 3.50 mm to approximately 3.90 mm, and more specifically of approximately 3.54 mm to approximately 3.85 mm. The preform 200 can have a weight distribution of the neck section 204 in the range of approximately 2.90 g to approximately 4.50 g, and more specifically of approximately 3.00 g to approximately 4.20 g, and more specifically of approximately 3.13 g to approximately 4.07 g. The preform 200 can have a weight distribution of the transition section 208 in the range of approximately 3.50 g to approximately 10.50 g, and more specifically of approximately 3.75 g to approximately 9.50 g, and more specifically of approximately 3.95 g to approximately 9.16 g. The preform 200 can have a weight distribution of the body section 212 in the range of approximately 12.50 g to approximately 23.50 g, and more specifically of approximately 11.00 g to approximately 22.50 g, and more specifically of approximately 10.34 g to approximately 21.82 g.
As a percentage of weight, the preform 200 can have a weight distribution of the neck section 204 in the range of approximately 9.50% to approximately 20.0% of the total weigh to of the preform 200, and more specifically of approximately 10.5% to approximately 19.0% of the total weigh to of the preform 200, and more specifically of approximately 11.60% to approximately 18.60% of the total weigh to of the preform 200.
The preform 200 can have a weight distribution of the transition section 208 in the range of approximately 20.0% to approximately 40.0% of the total weight of the preform 200, and more specifically approximately 20.0% to approximately 30.0% of the total weight of the preform 200, and more specifically approximately 20.0% to approximately 28.0% of the total weight of the preform 200, and more specifically approximately 22.0% to approximately 28.0% of the total weight of the preform 200.
The preform 200 can have a weight distribution of the body section 212 in the range of approximately 45.0% to approximately 65.0% of the total weight of the preform 200, and more specifically approximately 50.0% to approximately 65.0% of the total weight of the preform 200, and more specifically approximately 52.0% to approximately 62.50% of the total weight of the preform 200, and more specifically approximately 53.5% to approximately 62.5% of the total weight of the preform 200.
The preform 200 can also include a circumferential stretch ratio (CSR), defined by the largest diameter of the blow-molded bottle 100 divided by the smallest diameter of the preform 200, that is between 3.5 and 5.0. In other examples of embodiments, the preform 200 can include a CSR that is above or below the range described above. In addition, the preform 200 can includes an axial stretch ratio (ASR) defined by a first distance of the bottle 100, taken along an exterior surface of the bottle 100 from the neck 128 to the base 104, divided by a second distance of the preform 200, taken along an exterior surface of the preform 200 between the neck ring 136 to a position where the body portion 212 converges into the base 220, that is between 2.5 and 3.5. In other examples of embodiments, the preform 200 can include an ASR that is above or below the range described above.
The preform 200 described above has certain advantages. Providing a greater distribution of material in the transition section 208 of the preform 200 results in improved performance when the preform 200 is blow-molded into the bottle 100. The bell 116 of the bottle 100, which is formed by the transition section 208 in response to blow-molding, is strengthened by the additional material distributed to the transition section 208 of the preform 200. Specifically, a greater distribution of material (plastic) into the transition section 208, and towards the top of the preform 200, allows the bottle 100 to increase in strength and support greater weight. For example, the bottle 100 is more resistant to bending or deformation when stacked on pallets that may include multiple levels of bottles 100.
Although the disclosure has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the disclosure as described.
This application claims priority to U.S. Provisional Patent Application No. 63/160,371, filed on Mar. 12, 2021 and titled “Container Preform,” the entire contents of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3029963 | Evers | Apr 1962 | A |
3438578 | Peterson et al. | Apr 1969 | A |
D252530 | Budish | Jul 1979 | S |
4316551 | Belokin, Jr. | Feb 1982 | A |
4374878 | Jakobsen et al. | Feb 1983 | A |
D294462 | Ota et al. | Mar 1988 | S |
4756439 | Perock | Jul 1988 | A |
4818213 | Roy | Apr 1989 | A |
4818575 | Hirata et al. | Apr 1989 | A |
4847129 | Collette et al. | Jul 1989 | A |
4863046 | Collette et al. | Sep 1989 | A |
4907709 | Abe et al. | Mar 1990 | A |
4927680 | Collette et al. | May 1990 | A |
4948001 | Magly | Aug 1990 | A |
D315869 | Collette | Apr 1991 | S |
D321830 | York et al. | Nov 1991 | S |
5067622 | Garver et al. | Nov 1991 | A |
5092475 | Krishnakumar et al. | Mar 1992 | A |
5133468 | Brunson et al. | Jul 1992 | A |
5178289 | Krishnakumar et al. | Jan 1993 | A |
5199588 | Hayashi | Apr 1993 | A |
5255889 | Collette et al. | Oct 1993 | A |
5279433 | Krishnakumar et al. | Jan 1994 | A |
5281387 | Collette et al. | Jan 1994 | A |
D345693 | Edstrom | Apr 1994 | S |
5303833 | Hayashi et al. | Apr 1994 | A |
5303834 | Krishnakumar et al. | Apr 1994 | A |
5337909 | Vailliencourt | Aug 1994 | A |
5341946 | Vailliencourt et al. | Aug 1994 | A |
D352238 | Vailliencourt et al. | Nov 1994 | S |
D352245 | Krishnakumar et al. | Nov 1994 | S |
5366774 | Pinto et al. | Nov 1994 | A |
5381910 | Sugiura et al. | Jan 1995 | A |
5407086 | Ota et al. | Apr 1995 | A |
D358766 | Vailliencourt et al. | May 1995 | S |
5411699 | Collette et al. | May 1995 | A |
D364565 | Vailliencourt et al. | Nov 1995 | S |
D366416 | Semerskv | Jan 1996 | S |
D366417 | Semerskv | Jan 1996 | S |
5632397 | Fandeux et al. | May 1997 | A |
5645183 | Slat | Jul 1997 | A |
5669520 | Simpson | Sep 1997 | A |
5704503 | Krishnakumar et al. | Jan 1998 | A |
D391168 | Qqq | Feb 1998 | S |
D393802 | Collette et al. | Apr 1998 | S |
5762221 | Tobias et al. | Jun 1998 | A |
D397614 | Krishnakumar et al. | Sep 1998 | S |
D402895 | Takahashi et al. | Dec 1998 | S |
D404308 | Takahashi et al. | Jan 1999 | S |
5888598 | Brewster et al. | Mar 1999 | A |
D407649 | McCallister et al. | Apr 1999 | S |
D407650 | Takahashi et al. | Apr 1999 | S |
D411453 | Piccioli et al. | Jun 1999 | S |
5908128 | Krishnakumar et al. | Jun 1999 | A |
D413519 | Eberle et al. | Sep 1999 | S |
5971184 | Krishnakumar et al. | Oct 1999 | A |
5988417 | Chena et al. | Nov 1999 | A |
6016932 | Gaydosh et al. | Jan 2000 | A |
D419882 | Bretz et al. | Feb 2000 | S |
D420592 | Bretz et al. | Feb 2000 | S |
6036037 | Scheffer et al. | Mar 2000 | A |
D423365 | Eberle et al. | Apr 2000 | S |
6044996 | Carew et al. | Apr 2000 | A |
6044997 | Oaa | Apr 2000 | A |
6062409 | Eberle | May 2000 | A |
D426460 | Krishnakumar et al. | Jun 2000 | S |
D427905 | Eberle | Jul 2000 | S |
6092688 | Eberle et al. | Jul 2000 | A |
D429647 | Warner et al. | Aug 2000 | S |
D430493 | Weick | Sep 2000 | S |
6112925 | Nahill et al. | Sep 2000 | A |
6113841 | Nielsen | Sep 2000 | A |
D434330 | Rowe et al. | Nov 2000 | S |
D440157 | Lichtman et al. | Apr 2001 | S |
D440158 | Bretz et al. | Apr 2001 | S |
D440877 | Lichtman et al. | Apr 2001 | S |
D441294 | Lichtman et al. | May 2001 | S |
6230912 | Rashid | May 2001 | B1 |
6248413 | Barel et al. | Jun 2001 | B1 |
D445033 | Bretz et al. | Jul 2001 | S |
6257433 | Ogg et al. | Jul 2001 | B1 |
D446126 | Bretz et al. | Aug 2001 | S |
D447411 | Lichtman et al. | Sep 2001 | S |
6296131 | Rashid | Oct 2001 | B2 |
6347717 | Eberle | Feb 2002 | B1 |
D454500 | Bretz et al. | Mar 2002 | S |
D465158 | Peek et al. | Nov 2002 | S |
D466021 | Thieriunq et al. | Nov 2002 | S |
D466819 | Darr et al. | Dec 2002 | S |
6494333 | Sasaki et al. | Dec 2002 | B2 |
D469358 | Bryant et al. | Jan 2003 | S |
D469359 | Bryant et al. | Jan 2003 | S |
D469695 | Brvant et al. | Feb 2003 | S |
D469696 | Brvant et al. | Feb 2003 | S |
D470773 | Darr et al. | Feb 2003 | S |
D472470 | Bretz et al. | Apr 2003 | S |
6554146 | DeGroff et al. | Apr 2003 | B1 |
D476236 | Unqradv et al. | Jun 2003 | S |
6585125 | Peek | Jul 2003 | B1 |
D479690 | DeGroff | Sep 2003 | S |
6616001 | Saito et al. | Sep 2003 | B2 |
D480957 | Mooney et al. | Oct 2003 | S |
D485765 | Thieriunq et al. | Jan 2004 | S |
6682794 | Horn et al. | Jan 2004 | B1 |
6722514 | Renz | Apr 2004 | B2 |
6739467 | Saito et al. | May 2004 | B2 |
D494475 | Thieriunq et al. | Aug 2004 | S |
D497551 | Gamel et al. | Oct 2004 | S |
6830158 | Yourist | Dec 2004 | B2 |
6841262 | Beck et al. | Jan 2005 | B1 |
D502108 | Gamel et al. | Feb 2005 | S |
D503625 | Nelson et al. | Apr 2005 | S |
D503885 | Bretz et al. | Apr 2005 | S |
D504063 | Bretz et al. | Apr 2005 | S |
D506675 | Bretz et al. | Jun 2005 | S |
D506676 | Bretz et al. | Jun 2005 | S |
D506677 | Bretz et al. | Jun 2005 | S |
D507491 | Bretz et al. | Jul 2005 | S |
D507609 | Bretz et al. | Jul 2005 | S |
D507749 | Bretz et al. | Jul 2005 | S |
D508857 | Bretz et al. | Aug 2005 | S |
6932230 | Pedmo et al. | Aug 2005 | B2 |
D510526 | Bretz et al. | Oct 2005 | S |
7025219 | Heisner et al. | Apr 2006 | B2 |
7032770 | Finlav et al. | Apr 2006 | B2 |
7033656 | Nahil et al. | Apr 2006 | B2 |
D525530 | Livingston et al. | Jul 2006 | S |
D527643 | Gottlieb | Sep 2006 | S |
7172087 | Axe et al. | Feb 2007 | B1 |
D538660 | Gatewood | Mar 2007 | S |
7198164 | Yourist et al. | Apr 2007 | B2 |
D548106 | Martinez et al. | Aug 2007 | S |
7258244 | Unqradv | Aug 2007 | B2 |
D551081 | Ohara et al. | Sep 2007 | S |
7267242 | Tanaka et al. | Sep 2007 | B2 |
D555499 | Ross | Nov 2007 | S |
7334695 | Bvsick et al. | Feb 2008 | B2 |
7334696 | Tanaka et al. | Feb 2008 | B2 |
7347339 | Banqi et al. | Mar 2008 | B2 |
7364046 | Joshi et al. | Apr 2008 | B2 |
7416089 | Kraft et al. | Aug 2008 | B2 |
7416090 | Mooney et al. | Aug 2008 | B2 |
D579339 | Shmagin | Oct 2008 | S |
7451886 | Lisch et al. | Nov 2008 | B2 |
D584627 | Leooitevin | Jan 2009 | S |
D598779 | Leooitevin | Aug 2009 | S |
D610015 | Yourist et al. | Feb 2010 | S |
7694842 | Melrose | Apr 2010 | B2 |
7699183 | Matsuoka et al. | Apr 2010 | B2 |
7748551 | Gatewood et al. | Jul 2010 | B2 |
7748552 | Livinqston et al. | Jul 2010 | B2 |
7757874 | Ross | Jul 2010 | B2 |
D621271 | Soni | Aug 2010 | S |
7780025 | Simpson, Jr. et al. | Aug 2010 | B2 |
D623529 | Yourist et al. | Sep 2010 | S |
D624427 | Yourist et al. | Sep 2010 | S |
7798349 | Maczek et al. | Sep 2010 | B2 |
D630515 | Bretz et al. | Jan 2011 | S |
7861876 | Stowitts | Jan 2011 | B2 |
7927678 | Mitadera et al. | Apr 2011 | B2 |
7980404 | Trude et al. | Jul 2011 | B2 |
8020717 | Patel | Sep 2011 | B2 |
8047388 | Kelley et al. | Nov 2011 | B2 |
8091720 | Colloud | Jan 2012 | B2 |
8308007 | Mast et al. | Nov 2012 | B2 |
8328033 | Mast | Dec 2012 | B2 |
8381496 | Trude et al. | Feb 2013 | B2 |
8728601 | Hutts et al. | May 2014 | B2 |
9994350 | Labadie et al. | Jun 2018 | B2 |
10118724 | Hanan | Nov 2018 | B2 |
10329043 | Hanan | Jun 2019 | B2 |
10647465 | Hanan | May 2020 | B2 |
10829260 | Hanan | Nov 2020 | B2 |
11142364 | Hanan | Oct 2021 | B2 |
20010030166 | Ozawa et al. | Oct 2001 | A1 |
20020037338 | Lisch et al. | Mar 2002 | A1 |
20020090473 | Lee et al. | Jul 2002 | A1 |
20040000533 | Kamineni et al. | Jan 2004 | A1 |
20050279728 | Finlay et al. | Dec 2005 | A1 |
20060065992 | Hutchinson et al. | Mar 2006 | A1 |
20060070977 | Howell et al. | Apr 2006 | A1 |
20060113274 | Keller et al. | Jun 2006 | A1 |
20060118508 | Kraft et al. | Jun 2006 | A1 |
20060131257 | Gatewood et al. | Jun 2006 | A1 |
20060157439 | Howell | Jul 2006 | A1 |
20060255235 | Meyer et al. | Nov 2006 | A1 |
20070131644 | Melrose | Jun 2007 | A1 |
20070210026 | Darr et al. | Sep 2007 | A1 |
20080087628 | Bangi et al. | Apr 2008 | A1 |
20080257855 | Patel | Oct 2008 | A1 |
20090020497 | Tanaka et al. | Jan 2009 | A1 |
20090065468 | Hata et al. | Mar 2009 | A1 |
20090159556 | Patcheak et al. | Jun 2009 | A1 |
20090166314 | Matsuoka | Jul 2009 | A1 |
20090184127 | Mooney | Jul 2009 | A1 |
20090188888 | Penny | Jul 2009 | A1 |
20090261058 | Pritchett, Jr. | Oct 2009 | A1 |
20090261059 | Pritchett, Jr. | Oct 2009 | A1 |
20090266785 | Sieal | Oct 2009 | A1 |
20090283495 | Lane et al. | Nov 2009 | A1 |
20090321383 | Lane | Dec 2009 | A1 |
20100023378 | Ratnam | Jan 2010 | A1 |
20100028577 | Siegl | Feb 2010 | A1 |
20100089865 | Oauchi et al. | Apr 2010 | A1 |
20100163513 | Pedmo | Jul 2010 | A1 |
20100176081 | Kamineni et al. | Jul 2010 | A1 |
20100178148 | Forsthoevel et al. | Jul 2010 | A1 |
20100206837 | Deemer et al. | Aug 2010 | A1 |
20100206838 | Mast et al. | Aug 2010 | A1 |
20100206839 | Tanaka et al. | Aug 2010 | A1 |
20100206892 | Mast | Aug 2010 | A1 |
20100213204 | Melrose | Aug 2010 | A1 |
20100270259 | Russell et al. | Oct 2010 | A1 |
20100286837 | Jiao et al. | Nov 2010 | A1 |
20100304168 | Dambach | Dec 2010 | A1 |
20100304169 | Dambach | Dec 2010 | A1 |
20100314348 | Zoppas et al. | Dec 2010 | A1 |
20100320218 | Tanaka | Dec 2010 | A1 |
20110008560 | Dabbous et al. | Jan 2011 | A1 |
20110017700 | Patcheak et al. | Jan 2011 | A1 |
20110073559 | Schlies et al. | Mar 2011 | A1 |
20110115135 | Siegl | May 2011 | A1 |
20120027966 | Siegl | Feb 2012 | A1 |
20120031870 | Porter et al. | Feb 2012 | A1 |
20120132608 | Aoki | May 2012 | A1 |
20120248003 | Hunter et al. | Oct 2012 | A1 |
20120263902 | Hanan | Oct 2012 | A1 |
20130147097 | Lane | Jun 2013 | A1 |
20140190927 | Lane | Jul 2014 | A1 |
20140346135 | Melrose | Nov 2014 | A1 |
20150027974 | Niec | Jan 2015 | A1 |
20150122766 | Hanan | May 2015 | A1 |
20150144587 | Hanan | May 2015 | A1 |
20160176566 | Hanan | Jun 2016 | A1 |
20160193750 | Gaiotti et al. | Jul 2016 | A1 |
20160257029 | Lane et al. | Sep 2016 | A1 |
20180327131 | Hanan | Nov 2018 | A1 |
20180327132 | Hanan | Nov 2018 | A1 |
20190263554 | Hanan | May 2019 | A1 |
20200255179 | Hanan | Aug 2020 | A1 |
20220097895 | Hanan | Oct 2022 | A1 |
20230182949 | Hanan | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
1473102 | Feb 2004 | CN |
102012001229 | Jul 2013 | DE |
0199576 | Oct 1986 | EP |
2325091 | May 2011 | EP |
2846946 | Mar 2005 | FR |
2899204 | Jun 2008 | FR |
S5486560 | Jul 1979 | JP |
S62164504 | Jul 1987 | JP |
H07164436 | Jun 1995 | JP |
H0848321 | Feb 1996 | JP |
H09240647 | Sep 1997 | JP |
H1029614 | Feb 1998 | JP |
2004090425 | Mar 2004 | JP |
2008189721 | Aug 2008 | JP |
2009045877 | Mar 2009 | JP |
2013510015 | Mar 2013 | JP |
2015182789 | Oct 2015 | JP |
20040050926 | Jun 2004 | KR |
WO2004080828 | Sep 2004 | WO |
WO2006005413 | Jan 2006 | WO |
WO2006027092 | Mar 2006 | WO |
WO2007033722 | Mar 2007 | WO |
WO2007124894 | Nov 2007 | WO |
WO2011160748 | Dec 2011 | WO |
WO2012095285 | Jul 2012 | WO |
WO2012156048 | Nov 2012 | WO |
2016103563 | Jun 2016 | WO |
WO2017136584 | Aug 2017 | WO |
Entry |
---|
International Search Report with Written Opinion for related Application No. PCT/US2022/020044 dated May 31, 2022 (17 Pages). |
Number | Date | Country | |
---|---|---|---|
20220288834 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63160371 | Mar 2021 | US |